SRR5644279 - Dorymyrmex brunneus

Basic Information

Run: SRR5644279

Assay Type: WGS

Bioproject: PRJNA385522

Biosample: SAMN25003344

Bytes: 676398572

Center Name: EMBRAPA

Sequencing Information

Instrument: Illumina HiSeq 2500

Library Layout: PAIRED

Library Selection: RANDOM

Platform: ILLUMINA

Geographic Information

Country: Brazil

Continent: South America

Location Name: Brazil: Mato Grosso

Latitude/Longitude: 11.8602 S 55.6222 W

Sample Information

Host: Dorymyrmex brunneus

Isolation: -

Biosample Model: Metagenome or environmental

Collection Date: 2015

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Streptomyces sp. T12
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
3.31%
22.3
Streptomyces sp. T12
RISB2334
Sirex noctilio
Order: Hymenoptera
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
3.31%
22.0
Pseudomonas sp. CIP-10
RISB1564
Liometopum apiculatum
Order: Hymenoptera
None
5.69%
20.7
Streptomyces sp. T12
RISB1134
mud dauber wasp
Order: Hymenoptera
secondary metabolites derived from a Streptomyces sp. displayed significant inhibitory activity against hexokinase II
3.31%
20.7
Stenotrophomonas maltophilia
RISB2004
Trichogramma chilonis
Order: Hymenoptera
could significantly increase both female count
1.47%
17.4
Gilliamella
RISB0102
Apis mellifera
Order: Hymenoptera
Gilliamella apicola carries the gene for the desaturase FADS2, which is able to metabolize polyunsaturated fatty acids from pollen and synthesize endocannabinoid, a lipogenic neuroactive substance, thereby modulating reward learning and memory in honeybees.
1.89%
16.9
Apibacter
RISB0603
Apis cerana
Order: Hymenoptera
The acquisition of genes for the degradation of the toxic monosaccharides potentiates Apibacter with the ability to utilize the pollen hydrolysis products, at the same time enabling monosaccharide detoxification for the host
1.75%
16.2
Klebsiella pneumoniae
RISB2185
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
6.15%
16.2
Pseudomonas sp. CIP-10
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
5.69%
15.5
Wolbachia
RISB0190
Encarsia formosa
Order: Hymenoptera
Wolbachia's parthenogenesis-induction feminization factor (piff) gene modulates sex determination in Encarsia formosa by regulating doublesex (dsx) expression. When Wolbachia is removed, female-specific dsx decreases while male-specific dsx increases, resulting in haploid male offspring
0.28%
15.3
Pseudomonas sp. GCEP-101
RISB1564
Liometopum apiculatum
Order: Hymenoptera
None
0.13%
15.1
Wolbachia
RISB1584
Nasonia vitripennis
Order: Hymenoptera
there were few significant changes in immune or reproductive proteins between samples with and without Wolbachia infection. Differentially expressed proteins were involved in the binding process, catalytic activity, and the metabolic process
0.28%
15.1
Wolbachia
RISB2601
Asobara tabida
Order: Hymenoptera
Wolbachia is necessary for oogenesis in these A. tabida strains,aposymbiotic female wasps were completely incapable of producing mature oocytes and therefore could not reproduce
0.28%
13.8
Bacillus cereus
RISB2161
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
3.82%
13.8
Weissella
RISB0641
Formica
Order: Hymenoptera
exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew
1.02%
13.8
Enterococcus mundtii
RISB1733
Spodoptera littoralis
Order: Lepidoptera
actively secretes a stable class IIa bacteriocin (mundticin KS) against invading bacteria, including the opportunistic pathogens E. faecalis and E. casseliflavus, but not against other gut residents, facilitating the normal development of host gut microbiota
3.56%
13.6
Enterococcus mundtii
RISB0476
Spodoptera litura
Order: Lepidoptera
The ingestion of bacteria negatively affected the development and nutritional physiology of insect. The bacteria after successful establishment started degrading the gut wall and invaded the haemocoel thereby causing the death of the host.
3.56%
13.3
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
3.99%
13.3
Lactobacillus
RISB0639
Formica
Order: Hymenoptera
exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew
0.20%
12.9
Serratia marcescens
RISB0120
Nezara viridula
Order: Hemiptera
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies;transmitted bacteria impacted plant chemical defenses and were able to degrade toxic plant metabolites, aiding the shield bug in its nutrition
2.86%
12.9
Bacillus cereus
RISB2489
Anticarsia gemmatalis
Order: Lepidoptera
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
3.82%
12.8
Delftia
RISB0083
Osmia cornifrons
Order: Hymenoptera
be known to exhibit antibiotic activity, suggesting their potential protective role against pathogens
0.73%
12.8
Lactobacillus
RISB0529
Apis cerana
Order: Hymenoptera
LAB produce organic acids, known as anti-microbial metabolites, inhibiting the growth of spoilage and pathogenic microorganisms
0.20%
12.7
Massilia
RISB2151
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
1.39%
12.7
Serratia marcescens
RISB0477
Spodoptera litura
Order: Lepidoptera
The ingestion of bacteria negatively affected the development and nutritional physiology of insect. The bacteria after successful establishment started degrading the gut wall and invaded the haemocoel thereby causing the death of the host.
2.86%
12.6
Enterococcus mundtii
RISB2494
Anticarsia gemmatalis
Order: Lepidoptera
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
3.56%
12.5
Serratia marcescens
RISB0747
Rhodnius prolixus
Order: Hemiptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
2.86%
12.5
Lactobacillus
RISB0475
Apis mellifera
Order: Hymenoptera
A. kunkeei alleviated acetamiprid-induced symbiotic microbiota dysregulation and mortality in honeybees
0.20%
12.3
Klebsiella pneumoniae
RISB2459
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
6.15%
12.2
Gilliamella
RISB1945
Apis cerana
Order: Hymenoptera
None
1.89%
11.9
Burkholderia
RISB2149
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.58%
11.9
Klebsiella pneumoniae
RISB1994
Diatraea saccharalis
Order: Lepidoptera
possess cellulose degrading activity
6.15%
11.9
Apibacter
RISB0604
Apis cerana
Order: Hymenoptera
None
1.75%
11.8
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
3.99%
11.7
Duganella
RISB2152
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.25%
11.6
Bacillus thuringiensis
RISB2177
Armadillidae
Order: Isopoda
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
1.17%
11.2
Weissella
RISB1566
Liometopum apiculatum
Order: Hymenoptera
None
1.02%
11.0
Burkholderia
RISB2101
Formica exsecta
Order: Hymenoptera
produce antibiotics
0.58%
11.0
Burkholderia
RISB2580
Tetraponera binghami
Order: Hymenoptera
Nitrogen fixation
0.58%
10.9
Lactococcus lactis
RISB0131
Ceratitis capitata
Order: Diptera
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The  colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
0.79%
10.8
Enterobacter sp. JBIWA003
RISB0893
Bactrocera dorsalis
Order: Diptera
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
0.78%
10.8
Corynebacterium
RISB1285
Aphidius colemani
Order: Hymenoptera
Repelling parasitism
0.25%
10.7
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
0.52%
10.5
Stenotrophomonas maltophilia
RISB1122
Bombyx mori
Order: Lepidoptera
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
1.47%
10.5
Treponema
RISB2377
termite
Order: Blattodea
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
5.51%
10.4
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
0.52%
10.3
Enterobacter sp. JBIWA003
RISB1338
Ceratitis capitata
Order: Diptera
Enterobacter sp. AA26 dry biomass can fully replace the brewer’s yeast as a protein source in medfly larval diet without any effect on the productivity and the biological quality of reared medfly of VIENNA 8 GSS
0.78%
10.0
Escherichia coli
RISB2120
Galleria mellonella
Order: Lepidoptera
mediate trans-generational immune priming
3.99%
9.8
Lactococcus sp. NH2-7C
RISB2305
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.36%
9.6
Pantoea dispersa
RISB0182
Spodoptera frugiperda
Order: Lepidoptera
detoxify benzoxazinoids (secondary metabolites produced by maize) and promote caterpillar growth
2.61%
9.5
Lactococcus lactis
RISB0967
Oulema melanopus
Order: Coleoptera
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
0.79%
9.4
Buchnera aphidicola
RISB0685
Acyrthosiphon pisum
Order: Hemiptera
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
0.52%
9.3
Acinetobacter pittii
RISB1977
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
0.40%
9.2
Stenotrophomonas maltophilia
RISB1227
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
1.47%
9.2
Enterobacter sp. JBIWA003
RISB2221
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.78%
9.1
Pantoea dispersa
RISB1413
Bactrocera dorsalis
Order: Diptera
causing female Bactrocera dorsalis laid more eggs but had shorter lifespan
2.61%
9.1
Pantoea dispersa
RISB0381
Thrips tabaci
Order: Thysanoptera
gut symbionts are required for their development
2.61%
8.6
Blattabacterium cuenoti
RISB0133
Panesthiinae
Order: Blattodea
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
0.50%
8.4
Kosakonia sp. CCTCC M2018092
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.20%
6.6
Clostridium
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
2.14%
6.4
Comamonas testosteroni
RISB1875
Aedes aegypti
Order: Diptera
gut microbiome
0.99%
6.3
Blattabacterium cuenoti
RISB0518
Cryptocercus punctulatus
Order: Blattodea
collaborative arginine biosynthesis
0.50%
6.2
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
0.99%
6.0
Ralstonia
RISB0243
Spodoptera frugiperda
Order: Lepidoptera
None
5.94%
5.9
Blattabacterium cuenoti
RISB0093
Blattella germanica
Order: Blattodea
obligate endosymbiont
0.50%
5.9
Microbacterium sp. zg-Y818
RISB2095
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.32%
5.9
Treponema
RISB0169
Reticulitermes flaviceps
Order: Blattodea
None
5.51%
5.5
Staphylococcus epidermidis
RISB1070
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.12%
5.3
Candidatus Erwinia haradaeae
RISB1632
Lachninae
Order: Hemiptera
None
0.17%
5.2
Cellulosimicrobium
RISB2182
Armadillidae
Order: Isopoda
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.13%
5.1
Weissella
RISB1982
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
1.02%
4.8
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
3.52%
4.8
Clostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
2.14%
3.2
Gilliamella
RISB0620
Spodoptera frugiperda
Order: Lepidoptera
degrade amygdalin
1.89%
2.2
Delftia
RISB0806
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-19 oxidation pathway
0.73%
2.2
Clostridium
RISB1959
Pyrrhocoridae
Order: Hemiptera
None
2.14%
2.1
Corynebacterium
RISB0363
Pagiophloeus tsushimanus
Order: Coleoptera
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
0.25%
2.0
Corynebacterium
RISB0531
Helicoverpa armigera
Order: Lepidoptera
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
0.25%
1.9
Rhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
0.32%
1.9
Delftia
RISB1754
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.73%
1.9
Apibacter
RISB1138
Musca domestica
Order: Diptera
None
1.75%
1.8
Paraclostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.17%
1.2
Cronobacter
RISB0247
Tenebrio molitor
Order: Coleoptera
may be indirectly involved in the digestion of PE
0.23%
1.2
Cupriavidus
RISB0694
Alydus tomentosus
Order: Hemiptera
None
1.04%
1.0
Cedecea
RISB1570
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.13%
0.9
Priestia
RISB0839
Helicoverpa armigera
Order: Lepidoptera
producing amylase
0.20%
0.5
Flavobacterium
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
0.53%
0.5
Cedecea
RISB0504
Plutella xylostella
Order: Lepidoptera
None
0.13%
0.1

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR5644279
645.1 MB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table