SRR5642295 - Pheidole flavens
Basic Information
Run: SRR5642295
Assay Type: WGS
Bioproject: PRJNA385506
Biosample: SAMN25003336
Bytes: 751058072
Center Name: EMBRAPA
Sequencing Information
Instrument: Illumina HiSeq 2500
Library Layout: PAIRED
Library Selection: RANDOM
Platform: ILLUMINA
Geographic Information
Country: Brazil
Continent: South America
Location Name: Brazil: Mato Grosso
Latitude/Longitude: 11.8602 S 55.6222 W
Sample Information
Host: Pheidole flavens
Isolation: -
Biosample Model: Metagenome or environmental
Collection Date: 2015
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Streptomyces sp. SUK 48
Species-level Match
Host Order Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.65% |
19.6
|
Streptomyces sp. T12
Species-level Match
Host Order Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.64% |
19.6
|
Streptomyces sp. SUK 48
Species-level Match
Host Order Match
|
RISB2334 |
Sirex noctilio
Order: Hymenoptera
|
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
|
0.65% |
19.4
|
Spiroplasma sp. SV19
Species-level Match
Host Order Match
|
RISB1353 |
Cephus cinctus
Order: Hymenoptera
|
The bacterium also encoded biosynthetic pathways for essential vitamins B2, B3, and B9. We identified putative Spiroplasma virulence genes: cardiolipin and chitinase.
|
0.06% |
18.4
|
Spiroplasma sp. TIUS-1
Species-level Match
Host Order Match
|
RISB1353 |
Cephus cinctus
Order: Hymenoptera
|
The bacterium also encoded biosynthetic pathways for essential vitamins B2, B3, and B9. We identified putative Spiroplasma virulence genes: cardiolipin and chitinase.
|
0.02% |
18.3
|
Bacillus sp. DTU_2020_1000418_1_SI_GHA_SEK_038
Species-level Match
Host Order Match
|
RISB0218 |
Xylocopa appendiculata
Order: Hymenoptera
|
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
|
0.03% |
17.0
|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB1564 |
Liometopum apiculatum
Order: Hymenoptera
|
None
|
1.13% |
16.1
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB2004 |
Trichogramma chilonis
Order: Hymenoptera
|
could significantly increase both female count
|
0.16% |
16.1
|
Gilliamella
Host Order Match
|
RISB0102 |
Apis mellifera
Order: Hymenoptera
|
Gilliamella apicola carries the gene for the desaturase FADS2, which is able to metabolize polyunsaturated fatty acids from pollen and synthesize endocannabinoid, a lipogenic neuroactive substance, thereby modulating reward learning and memory in honeybees.
|
0.35% |
15.4
|
Wolbachia
Host Order Match
|
RISB0190 |
Encarsia formosa
Order: Hymenoptera
|
Wolbachia's parthenogenesis-induction feminization factor (piff) gene modulates sex determination in Encarsia formosa by regulating doublesex (dsx) expression. When Wolbachia is removed, female-specific dsx decreases while male-specific dsx increases, resulting in haploid male offspring
|
0.16% |
15.2
|
Pseudomonas sp. REST10
Species-level Match
Host Order Match
|
RISB1564 |
Liometopum apiculatum
Order: Hymenoptera
|
None
|
0.04% |
15.0
|
Bacillus sp. DTU_2020_1000418_1_SI_GHA_SEK_038
Species-level Match
Host Order Match
|
RISB1562 |
Liometopum apiculatum
Order: Hymenoptera
|
None
|
0.03% |
15.0
|
Wolbachia
Host Order Match
|
RISB1584 |
Nasonia vitripennis
Order: Hymenoptera
|
there were few significant changes in immune or reproductive proteins between samples with and without Wolbachia infection. Differentially expressed proteins were involved in the binding process, catalytic activity, and the metabolic process
|
0.16% |
15.0
|
Bartonella
Host Order Match
|
RISB1673 |
Apis mellifera
Order: Hymenoptera
|
a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream
|
2.22% |
14.8
|
Apibacter
Host Order Match
|
RISB0603 |
Apis cerana
Order: Hymenoptera
|
The acquisition of genes for the degradation of the toxic monosaccharides potentiates Apibacter with the ability to utilize the pollen hydrolysis products, at the same time enabling monosaccharide detoxification for the host
|
0.30% |
14.8
|
Wolbachia
Host Order Match
|
RISB2601 |
Asobara tabida
Order: Hymenoptera
|
Wolbachia is necessary for oogenesis in these A. tabida strains,aposymbiotic female wasps were completely incapable of producing mature oocytes and therefore could not reproduce
|
0.16% |
13.7
|
Lactobacillus
Host Order Match
|
RISB0639 |
Formica
Order: Hymenoptera
|
exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew
|
0.04% |
12.8
|
Lactobacillus
Host Order Match
|
RISB0529 |
Apis cerana
Order: Hymenoptera
|
LAB produce organic acids, known as anti-microbial metabolites, inhibiting the growth of spoilage and pathogenic microorganisms
|
0.04% |
12.6
|
Nocardia
Host Order Match
|
RISB0947 |
Acromyrmex
Order: Hymenoptera
|
Pseudonocardia in the Acromyrmex leaf-cutter ants as a protective partner against the entomopathogenic fungus Metarhizium
|
0.04% |
12.5
|
Bacteroides
Host Order Match
|
RISB0256 |
Leptocybe invasa
Order: Hymenoptera
|
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
|
0.12% |
12.4
|
Nocardia
Host Order Match
|
RISB1218 |
Mycocepurus smithii
Order: Hymenoptera
|
produce secondary metabolites with antibiotic activity that protects the fungus garden against pathogens
|
0.04% |
12.1
|
Lactobacillus
Host Order Match
|
RISB0475 |
Apis mellifera
Order: Hymenoptera
|
A. kunkeei alleviated acetamiprid-induced symbiotic microbiota dysregulation and mortality in honeybees
|
0.04% |
12.1
|
Bacteroides
Host Order Match
|
RISB2590 |
Encarsia pergandiella
Order: Hymenoptera
|
associated with thelytokous parthenogenetic reproduction in Encarsia, a genus of parasitoid wasps
|
0.12% |
12.1
|
Arsenophonus
Host Order Match
|
RISB0982 |
Vespula penalica
Order: Hymenoptera
|
Arsenophonus sp. has been negatively associated with honeybee hive health
|
0.04% |
11.5
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
1.13% |
11.0
|
Bacillus cereus
Species-level Match
|
RISB2161 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.82% |
10.8
|
Klebsiella pneumoniae
Species-level Match
|
RISB2185 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.57% |
10.6
|
Gilliamella
Host Order Match
|
RISB1945 |
Apis cerana
Order: Hymenoptera
|
None
|
0.35% |
10.4
|
Apibacter
Host Order Match
|
RISB0604 |
Apis cerana
Order: Hymenoptera
|
None
|
0.30% |
10.3
|
Arsenophonus
Host Order Match
|
RISB0428 |
Nasonia vitripennis
Order: Hymenoptera
|
male killing
|
0.04% |
10.3
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
0.81% |
10.1
|
Buchnera aphidicola
Species-level Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
0.09% |
10.1
|
Serratia marcescens
Species-level Match
|
RISB0120 |
Nezara viridula
Order: Hemiptera
|
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies;transmitted bacteria impacted plant chemical defenses and were able to degrade toxic plant metabolites, aiding the shield bug in its nutrition
|
0.08% |
10.1
|
Pantoea agglomerans
Species-level Match
|
RISB2197 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.07% |
10.1
|
Burkholderia gladioli
Species-level Match
|
RISB1172 |
Lagria villosa
Order: Coleoptera
|
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
|
0.06% |
10.1
|
Arsenophonus
Host Order Match
|
RISB0366 |
Pachycrepoideus vindemmiae
Order: Hymenoptera
|
None
|
0.04% |
10.0
|
Klebsiella oxytoca
Species-level Match
|
RISB0130 |
Ceratitis capitata
Order: Diptera
|
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
|
0.03% |
10.0
|
Serratia marcescens
Species-level Match
|
RISB0477 |
Spodoptera litura
Order: Lepidoptera
|
The ingestion of bacteria negatively affected the development and nutritional physiology of insect. The bacteria after successful establishment started degrading the gut wall and invaded the haemocoel thereby causing the death of the host.
|
0.08% |
9.9
|
Buchnera aphidicola
Species-level Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
0.09% |
9.9
|
Serratia marcescens
Species-level Match
|
RISB0747 |
Rhodnius prolixus
Order: Hemiptera
|
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
|
0.08% |
9.8
|
Citrobacter sp. BDA59-3
Species-level Match
|
RISB1503 |
Bactrocera dorsalis
Order: Diptera
|
Pesticide-degrading bacteria were frequently detected from pesticide-resistant insects. Susceptible insects became resistant after inoculation of the pesticide-degrading symbiont
|
0.95% |
9.5
|
Lactococcus sp. LG1267
Species-level Match
|
RISB2305 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.21% |
9.4
|
Burkholderia gladioli
Species-level Match
|
RISB1729 |
Lagria hirta
Order: Coleoptera
|
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
|
0.06% |
9.4
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1122 |
Bombyx mori
Order: Lepidoptera
|
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
|
0.16% |
9.2
|
Mammaliicoccus sciuri
Species-level Match
|
RISB0075 |
Bombyx mori
Order: Lepidoptera
|
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
|
0.05% |
9.1
|
Acinetobacter pittii
Species-level Match
|
RISB1977 |
Blattella germanica
Order: Blattodea
|
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
|
0.10% |
8.9
|
Klebsiella oxytoca
Species-level Match
|
RISB2565 |
Acrolepiopsis assectella
Order: Lepidoptera
|
Klebsiella oxytoca and Bacillus spp. produce the volatile alkyl disulfides present in the fecal pellets, which serve as kairomones to attract the parasitoid Diadromus pulchellus to the moth host
|
0.03% |
8.9
|
Buchnera aphidicola
Species-level Match
|
RISB0685 |
Acyrthosiphon pisum
Order: Hemiptera
|
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
|
0.09% |
8.9
|
Burkholderia gladioli
Species-level Match
|
RISB1604 |
Lagria villosa
Order: Coleoptera
|
Bacteria produce icosalide, an unusual two-tailed lipocyclopeptide antibiotic,which is active against entomopathogenic bacteria, thus adding to the chemical armory protecting beetle offspring
|
0.06% |
8.9
|
Citrobacter sp. RHBSTW-00881
Species-level Match
|
RISB1503 |
Bactrocera dorsalis
Order: Diptera
|
Pesticide-degrading bacteria were frequently detected from pesticide-resistant insects. Susceptible insects became resistant after inoculation of the pesticide-degrading symbiont
|
0.15% |
8.7
|
Escherichia coli
Species-level Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
0.81% |
8.5
|
Morganella morganii
Species-level Match
|
RISB0772 |
Delia antiqua
Order: Diptera
|
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.04% |
8.3
|
Morganella morganii
Species-level Match
|
RISB0008 |
Phormia regina
Order: Diptera
|
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
0.04% |
8.0
|
Blattabacterium cuenoti
Species-level Match
|
RISB0133 |
Panesthiinae
Order: Blattodea
|
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
|
0.04% |
8.0
|
Citrobacter freundii
Species-level Match
|
RISB0517 |
Leptinotarsa decemlineata
Order: Coleoptera
|
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
|
0.07% |
8.0
|
Spiroplasma poulsonii
Species-level Match
|
RISB1346 |
Drosophila melanogaster
Order: Diptera
|
S. poulsonii protects its host against parasitoid wasps and nematodes by the action of toxins from the family of Ribosome Inactivating Proteins
|
0.10% |
8.0
|
Morganella morganii
Species-level Match
|
RISB1867 |
Costelytra zealandica
Order: Coleoptera
|
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
|
0.04% |
7.9
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1227 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.16% |
7.9
|
Enterococcus faecalis
Species-level Match
|
RISB0497 |
Cryptolestes ferrugineus
Order: Coleoptera
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
|
0.08% |
7.7
|
Enterococcus faecalis
Species-level Match
|
RISB1411 |
Bactrocera dorsalis
Order: Diptera
|
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
|
0.08% |
7.6
|
Enterobacter cloacae
Species-level Match
|
RISB1699 |
Plutella xylostella
Order: Lepidoptera
|
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
|
0.04% |
7.5
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1693 |
Plutella xylostella
Order: Lepidoptera
|
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
|
0.03% |
7.5
|
Enterococcus faecalis
Species-level Match
|
RISB2042 |
Harpalus pensylvanicus
Order: Coleoptera
|
E. faecalis facilitate seed consumption by H. pensylvanicus, possibly by contributing digestive enzymes to their host
|
0.08% |
7.4
|
Pantoea agglomerans
Species-level Match
|
RISB2579 |
Schistocerca gregaria
Order: Orthoptera
|
produces an antifungal and antibacterial molecule serving as antimicrobial defense against gut pathogens
|
0.07% |
7.2
|
Enterobacter cloacae
Species-level Match
|
RISB2217 |
Thermobia domestica
Order: Zygentoma
|
Mediated by two microbial symbiont, the firebat saggregates in response to the faeces of conspecifics
|
0.04% |
7.1
|
Enterobacter cloacae
Species-level Match
|
RISB1428 |
Rhynchophorus ferrugineus
Order: Coleoptera
|
promote the development and body mass gain of RPW larvae by improving their nutrition metabolism
|
0.04% |
7.0
|
Escherichia coli
Species-level Match
|
RISB2120 |
Galleria mellonella
Order: Lepidoptera
|
mediate trans-generational immune priming
|
0.81% |
6.6
|
Lactococcus sp. LG1267
Species-level Match
|
RISB0811 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-13 oxidation pathway
|
0.21% |
6.6
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1692 |
Plutella xylostella
Order: Lepidoptera
|
participate in the synthesis of host lacking amino acids histidine and threonine
|
0.03% |
6.6
|
Kosakonia sp. BYX6
Species-level Match
|
RISB0810 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-16 oxidation pathway
|
0.02% |
6.4
|
Pantoea agglomerans
Species-level Match
|
RISB0379 |
Frankliniella occidentalis
Order: Thysanoptera
|
gut symbionts are required for their development
|
0.07% |
6.0
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1691 |
Plutella xylostella
Order: Lepidoptera
|
activity of cellulose and hemicellulose
|
0.03% |
5.8
|
Blattabacterium cuenoti
Species-level Match
|
RISB0518 |
Cryptocercus punctulatus
Order: Blattodea
|
collaborative arginine biosynthesis
|
0.04% |
5.7
|
Chryseobacterium sp. MEBOG07
Species-level Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.08% |
5.6
|
Agrobacterium tumefaciens
Species-level Match
|
RISB0650 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.61% |
5.6
|
Salmonella enterica
Species-level Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
0.49% |
5.5
|
Blattabacterium cuenoti
Species-level Match
|
RISB0093 |
Blattella germanica
Order: Blattodea
|
obligate endosymbiont
|
0.04% |
5.5
|
Comamonas testosteroni
Species-level Match
|
RISB1875 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.04% |
5.3
|
Staphylococcus epidermidis
Species-level Match
|
RISB1070 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.04% |
5.3
|
Methylovirgula
|
RISB0137 |
Coccinella septempunctata
Order: Coleoptera
|
Methylovirgula is ubiquitous in soil and has been found in many soil samples as a major species producing carbon activity, scholars have found that the microorganism has the highest content in mixed peat swamp forest systems and has the effect of harnessing and reducing methane
|
0.14% |
5.1
|
Acetobacter
|
RISB1865 |
Drosophila melanogaster
Order: Diptera
|
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
|
0.07% |
5.1
|
Candidatus Kirkpatrickella diaphorinae
Species-level Match
|
RISB0222 |
Diaphorina citri
Order: Hemiptera
|
None
|
0.03% |
5.0
|
Cupriavidus pauculus
Species-level Match
|
RISB0694 |
Alydus tomentosus
Order: Hemiptera
|
None
|
0.02% |
5.0
|
Trabulsiella
|
RISB2201 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.02% |
5.0
|
Clostridium
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.46% |
4.7
|
Acetobacter
|
RISB0961 |
Drosophila melanogaster
Order: Diptera
|
The exist of Acetobacter had a balancing effect on food ingestion when carbohydrate levels were high in the warmer months, stabilizing fitness components of flies across the year.
|
0.07% |
3.7
|
Rhizobium
|
RISB0135 |
Coccinella septempunctata
Order: Coleoptera
|
be commonly found in plant roots and they all have nitrogen fixation abilities
|
1.29% |
2.9
|
Acetobacter
|
RISB0184 |
Drosophila melanogaster
Order: Diptera
|
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
|
0.07% |
2.4
|
Bacteroides
|
RISB0090 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.12% |
2.2
|
Streptococcus
|
RISB2625 |
Galleria mellonella
Order: Lepidoptera
|
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
|
0.12% |
2.1
|
Bradyrhizobium
|
RISB0135 |
Coccinella septempunctata
Order: Coleoptera
|
be commonly found in plant roots and they all have nitrogen fixation abilities
|
0.54% |
2.1
|
Vibrio
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.77% |
2.1
|
Sphingomonas
|
RISB0420 |
Aphis gossypii
Order: Hemiptera
|
Sphingomonas could mediate A. gossypii resistance to imidacloprid by hydroxylation and nitroreduction
|
0.06% |
2.1
|
Sphingomonas
|
RISB1307 |
Aphis gossypii
Order: Hemiptera
|
have been previously described in associations with phloem-feeding insects, in low abundances
|
0.06% |
1.9
|
Lachnospira
|
RISB2110 |
Blattella germanica
Order: Blattodea
|
Hydrolyze polysaccharide; assist digestion; synthesize acetate, propionate, and butyrate
|
0.05% |
1.8
|
Streptococcus
|
RISB2624 |
Reticulitermes flavipes
Order: Blattodea
|
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
|
0.12% |
1.8
|
Sphingomonas
|
RISB0134 |
Spodoptera frugiperda
Order: Lepidoptera
|
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
|
0.06% |
1.7
|
Clostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.46% |
1.5
|
Streptococcus
|
RISB2604 |
Homona magnanima
Order: Lepidoptera
|
influence the growth of Bacillus thuringiensis in the larvae
|
0.12% |
1.3
|
Paraclostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.05% |
1.1
|
Cronobacter
|
RISB0247 |
Tenebrio molitor
Order: Coleoptera
|
may be indirectly involved in the digestion of PE
|
0.03% |
1.0
|
Cedecea
|
RISB1570 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
0.02% |
0.7
|
Gilliamella
|
RISB0620 |
Spodoptera frugiperda
Order: Lepidoptera
|
degrade amygdalin
|
0.35% |
0.7
|
Trabulsiella
|
RISB1685 |
Melolontha hippocastani
Order: Coleoptera
|
Involved in cellulose degradation
|
0.02% |
0.7
|
Mycobacterium
|
RISB1156 |
Nicrophorus concolor
Order: Coleoptera
|
produces Antimicrobial compounds
|
0.04% |
0.7
|
Clostridium
|
RISB1959 |
Pyrrhocoridae
Order: Hemiptera
|
None
|
0.46% |
0.5
|
Ralstonia
|
RISB0243 |
Spodoptera frugiperda
Order: Lepidoptera
|
None
|
0.39% |
0.4
|
Priestia
|
RISB0839 |
Helicoverpa armigera
Order: Lepidoptera
|
producing amylase
|
0.05% |
0.4
|
Peribacillus
|
RISB1877 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.05% |
0.3
|
Apibacter
|
RISB1138 |
Musca domestica
Order: Diptera
|
None
|
0.30% |
0.3
|
Paraburkholderia
|
RISB0125 |
Physopelta gutta
Order: Hemiptera
|
None
|
0.25% |
0.3
|
Flavobacterium
|
RISB0659 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.20% |
0.2
|
Methylorubrum
|
RISB0903 |
Myzus persicae
Order: Hemiptera
|
None
|
0.11% |
0.1
|
Vagococcus
|
RISB0042 |
Aldrichina grahami
Order: Diptera
|
None
|
0.06% |
0.1
|
Legionella
|
RISB1687 |
Polyplax serrata
Order: Phthiraptera
|
None
|
0.05% |
0.1
|
Cedecea
|
RISB0504 |
Plutella xylostella
Order: Lepidoptera
|
None
|
0.02% |
0.0
|
Helicobacter
|
RISB0662 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.02% |
0.0
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.