SRR5626978 - Harmonia axyridis

Basic Information

Run: SRR5626978

Assay Type: WGS

Bioproject: PRJNA384388

Biosample: SAMN25003323

Bytes: 735394331

Center Name: EMBRAPA

Sequencing Information

Instrument: Illumina HiSeq 2500

Library Layout: PAIRED

Library Selection: RANDOM

Platform: ILLUMINA

Geographic Information

Country: USA

Continent: North America

Location Name: USA: St. Paul\, Minnesota

Latitude/Longitude: 44.9905 N 93.1805 W

Sample Information

Host: Harmonia axyridis

Isolation: -

Biosample Model: Metagenome or environmental

Collection Date: 2016

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Bacillus sp. 7D3
RISB1645
Osphranteria coerulescens
Order: Coleoptera
The isolate has cellulolytic activity and can hydrolyze CMC, avicel, cellulose and sawdust with broad temperature and pH stability
27.56%
45.2
Bacillus sp. 7D3
RISB0805
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-8 oxidation pathway
27.56%
44.0
Bacillus sp. 7D3
RISB1147
Plodia interpunctella
Order: Coleoptera
damaged polyethylene (PE) films
27.56%
43.2
Staphylococcus
RISB0099
Harmonia axyridis
Order: Coleoptera
None
0.43%
30.4
Pseudomonas sp. CIP-10
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
9.04%
28.9
Pseudomonas sp. CIP-10
RISB2224
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
9.04%
27.4
Pseudomonas sp. CIP-10
RISB0815
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-15 oxidation pathway
9.04%
25.5
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
12.12%
23.4
Streptomyces sp. T12
RISB0777
Copris tripartitus
Order: Coleoptera
contribute brood ball hygiene by inhibiting fungal parasites in the environment
4.20%
20.8
Stenotrophomonas maltophilia
RISB0139
Tenebrio molitor
Order: Coleoptera
correlated with polyvinyl chloride PVC degradation
4.25%
20.3
Staphylococcus
RISB0945
Callosobruchus maculatus
Order: Coleoptera
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
0.43%
15.4
Acinetobacter
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.31%
15.0
Wolbachia
RISB1452
Octodonta nipae
Order: Coleoptera
Wolbachia harbored dominantly in a female than the male adult, while, no significant differences were observed between male and female body parts and tissues
1.36%
14.5
Wolbachia
RISB2107
Sitophilus zeamais
Order: Coleoptera
Wolbachia directly favored weevil fertility and exhibited only mild indirect effects, usually enhancing the SZPE effect
1.36%
13.7
Acinetobacter
RISB1356
Callosobruchus maculatus
Order: Coleoptera
These bacterial phyla may allow the adults C. maculatus to survive on DDVP treated grains, thereby making it inappropriate to control the beetle populations in the field.
0.31%
13.7
Stenotrophomonas maltophilia
RISB1122
Bombyx mori
Order: Lepidoptera
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
4.25%
13.3
Streptomyces sp. T12
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
4.20%
13.2
Wolbachia
RISB1282
Ips sp.
Order: Coleoptera
inducing cytoplasmic incompatibility, resulting in reproductive distortions and hence
1.36%
13.1
Streptomyces sp. T12
RISB2334
Sirex noctilio
Order: Hymenoptera
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
4.20%
12.9
Staphylococcus
RISB0946
Callosobruchus maculatus
Order: Coleoptera
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine
0.43%
12.8
Bacteroides
RISB1183
Oryzaephilus surinamensis
Order: Coleoptera
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
0.57%
12.6
Acinetobacter
RISB0520
Leptinotarsa decemlineata
Order: Coleoptera
inhibited the expression of genes associated with the JA-mediated defense signaling pathway and SGA biosynthesis
0.31%
12.6
Corynebacterium
RISB0363
Pagiophloeus tsushimanus
Order: Coleoptera
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
0.41%
12.2
Stenotrophomonas maltophilia
RISB1227
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
4.25%
12.0
Lysinibacillus
RISB1066
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.26%
10.5
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
0.43%
10.4
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
0.43%
10.2
Buchnera aphidicola
RISB0685
Acyrthosiphon pisum
Order: Hemiptera
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
0.43%
9.2
Blattabacterium cuenoti
RISB0133
Panesthiinae
Order: Blattodea
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
0.40%
8.3
Apibacter
RISB0603
Apis cerana
Order: Hymenoptera
The acquisition of genes for the degradation of the toxic monosaccharides potentiates Apibacter with the ability to utilize the pollen hydrolysis products, at the same time enabling monosaccharide detoxification for the host
1.79%
6.3
Blattabacterium cuenoti
RISB0518
Cryptocercus punctulatus
Order: Blattodea
collaborative arginine biosynthesis
0.40%
6.1
Blattabacterium cuenoti
RISB0093
Blattella germanica
Order: Blattodea
obligate endosymbiont
0.40%
5.8
Candidatus Regiella
RISB1370
Sitobion avenae
Order: Hemiptera
Regiella infection decreased the intrinsic rate of increase (rm) of aphids at 25 °C and 28 °C. However, at 31 °C, the effect of Regiella on the rm varied depending on the aphid genotype and density. Thus, the negative effects of this endosymbiont on its host were environmentally dependent.
0.22%
5.2
Francisella
RISB1907
Bombyx mori
Order: Lepidoptera
After infection with F. tularensis, the induction of melanization and nodulation, which are immune responses to bacterial infection, were inhibited in silkworms. Pre-inoculation of silkworms with F. tularensis enhanced the expression of antimicrobial peptides and resistance to infection by pathogenic bacteria.
0.21%
5.2
Candidatus Karelsulcia muelleri
RISB1591
Philaenus spumarius
Order: Hemiptera
None
0.13%
5.1
Candidatus Regiella
RISB1819
Sitobion avenae
Order: Hemiptera
In R. insecticola-infected aphid lines, there were increases in plasticities for developmental times of first and second instar nymphs and for fecundity, showing novel functional roles of bacterial symbionts in plant-insect interactions.
0.22%
5.0
Clostridium
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.37%
4.6
Candidatus Regiella
RISB1363
Sitobion avenae
Order: Hemiptera
R. insecticola-infected aphids were more predated by the ladybird Hippodamia variegata irrespective of host plants and did not improve defences against coccinellid predators or metabolic rates on any host plants
0.22%
4.4
Bacteroides
RISB0256
Leptocybe invasa
Order: Hymenoptera
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
0.57%
2.9
Bacteroides
RISB0090
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.57%
2.7
Corynebacterium
RISB0531
Helicoverpa armigera
Order: Lepidoptera
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
0.41%
2.1
Apibacter
RISB0604
Apis cerana
Order: Hymenoptera
None
1.79%
1.8
Clostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.37%
1.4
Lysinibacillus
RISB1416
Psammotermes hypostoma
Order: Blattodea
isolates showed significant cellulolytic activity
0.26%
1.2
Corynebacterium
RISB2360
Bombyx mori
Order: Lepidoptera
producing lipase in a gut environment
0.41%
1.2
Flavobacterium
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
0.61%
0.6
Peribacillus
RISB1877
Aedes aegypti
Order: Diptera
gut microbiome
0.30%
0.6
Clostridium
RISB1959
Pyrrhocoridae
Order: Hemiptera
None
0.37%
0.4
Legionella
RISB1687
Polyplax serrata
Order: Phthiraptera
None
0.18%
0.2
Cupriavidus
RISB0694
Alydus tomentosus
Order: Hemiptera
None
0.13%
0.1

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR5626978
701.3 MB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table