SRR5342714 - Cycloneda sanguinea

Basic Information

Run: SRR5342714

Assay Type: WGS

Bioproject: PRJNA377582

Biosample: SAMN25047036

Bytes: 1676171597

Center Name: EMBRAPA

Sequencing Information

Instrument: Illumina HiSeq 2500

Library Layout: PAIRED

Library Selection: RANDOM

Platform: ILLUMINA

Geographic Information

Country: Brazil

Continent: South America

Location Name: Brazil: Distrito Federal

Latitude/Longitude: 15.73 S 47.9002 W

Sample Information

Host: Cycloneda sanguinea

Isolation: -

Biosample Model: Metagenome or environmental

Collection Date: 2015

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
17.25%
28.6
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
3.58%
21.3
Pseudomonas sp. CIP-10
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.84%
20.7
Acinetobacter sp. TGL-Y2
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.14%
19.8
Bacillus cereus
RISB1056
Oryctes rhinoceros
Order: Coleoptera
provide symbiotic digestive functions to Oryctes
3.35%
19.3
Lactococcus lactis
RISB0967
Oulema melanopus
Order: Coleoptera
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
0.73%
19.3
Bacillus cereus
RISB1778
Lissorhoptrus oryzophilus
Order: Coleoptera
might be promising paratransgenesis candidates
3.35%
19.3
Pseudomonas sp. CIP-10
RISB2224
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.84%
19.2
Enterococcus faecalis
RISB0497
Cryptolestes ferrugineus
Order: Coleoptera
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
0.48%
18.1
Morganella morganii
RISB1867
Costelytra zealandica
Order: Coleoptera
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
0.11%
18.0
Enterococcus faecalis
RISB2042
Harpalus pensylvanicus
Order: Coleoptera
E. faecalis facilitate seed consumption by H. pensylvanicus, possibly by contributing digestive enzymes to their host
0.48%
17.8
Proteus vulgaris
RISB0001
Leptinotarsa decemlineata
Order: Coleoptera
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
0.12%
17.8
Bacillus sp. N1-1
RISB1645
Osphranteria coerulescens
Order: Coleoptera
The isolate has cellulolytic activity and can hydrolyze CMC, avicel, cellulose and sawdust with broad temperature and pH stability
0.08%
17.7
Lactococcus lactis
RISB1430
Rhynchophorus ferrugineus
Order: Coleoptera
promote the development and body mass gain of RPW larvae by improving their nutrition metabolism
0.73%
17.7
Klebsiella pneumoniae
RISB1153
Tenebrio molitor
Order: Coleoptera
degrading plastics
2.23%
17.6
Serratia marcescens
RISB1295
Nicrophorus vespilloides
Order: Coleoptera
producing antibacterial compound Serrawettin W2, which has antibacterial and nematode-inhibiting effects
0.30%
17.4
Pseudomonas sp. CIP-10
RISB0815
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-15 oxidation pathway
0.84%
17.3
Acinetobacter sp. TGL-Y2
RISB0706
Curculio chinensis
Order: Coleoptera
facilitate the degradation of tea saponin; genome contains 47 genes relating to triterpenoids degradation
0.14%
17.2
Streptomyces sp. T12
RISB0777
Copris tripartitus
Order: Coleoptera
contribute brood ball hygiene by inhibiting fungal parasites in the environment
0.51%
17.1
Serratia marcescens
RISB0365
Pagiophloeus tsushimanus
Order: Coleoptera
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
0.30%
17.1
Enterobacter cloacae
RISB1428
Rhynchophorus ferrugineus
Order: Coleoptera
promote the development and body mass gain of RPW larvae by improving their nutrition metabolism
0.09%
17.0
Enterococcus faecalis
RISB0374
Tribolium castaneum
Order: Coleoptera
modulates host phosphine resistance by interfering with the redox system
0.48%
16.9
Morganella morganii
RISB1548
Costelytra zealandica
Order: Coleoptera
symbionts residing in the colleterial glands produce phenol 1 as the female sex pheromone
0.11%
16.9
Morganella morganii
RISB1868
Costelytra zealandica
Order: Coleoptera
produces phenol as the sex pheromone of the host from tyrosine in the colleterial gland
0.11%
16.9
Stenotrophomonas maltophilia
RISB0139
Tenebrio molitor
Order: Coleoptera
correlated with polyvinyl chloride PVC degradation
0.64%
16.6
Paenibacillus sp. IHB B 3084
RISB0813
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-9 oxidation pathway
0.24%
16.6
Serratia marcescens
RISB1158
Nicrophorus vespilloides
Order: Coleoptera
produces an antibacterial cyclic lipopeptide called serrawettin W2
0.30%
16.6
Acinetobacter sp. TGL-Y2
RISB0804
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-11 oxidation pathway
0.14%
16.6
Burkholderia
RISB1172
Lagria villosa
Order: Coleoptera
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
1.10%
16.1
Lactococcus lactis
RISB1065
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.73%
16.0
Wolbachia pipientis
RISB2621
Tribolium confusum
Order: Coleoptera
induces cytoplasmic incompatibility
0.06%
15.8
Lysinibacillus fusiformis
RISB1066
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.29%
15.5
Staphylococcus epidermidis
RISB1070
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.23%
15.5
Burkholderia
RISB1729
Lagria hirta
Order: Coleoptera
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
1.10%
15.4
Staphylococcus hominis
RISB1071
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.11%
15.3
Burkholderia
RISB1836
Dendroctonus valens
Order: Coleoptera
It can trongly degrade naringenin, and pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and facilitate naringenin biodegradation by the microbiotas.
1.10%
15.1
Sphingobacterium
RISB2227
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.13%
13.5
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
3.58%
12.9
Bacteroides
RISB1183
Oryzaephilus surinamensis
Order: Coleoptera
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
0.77%
12.8
Klebsiella pneumoniae
RISB2185
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
2.23%
12.2
Leuconostoc
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.14%
11.6
Halomonas
RISB1808
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.10%
11.4
Candidatus Mesenet
RISB1785
Brontispa longissima
Order: Coleoptera
induced complete Cytoplasmic incompatibility (CI) (100% mortality)
0.05%
11.4
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
0.78%
10.8
Mycobacterium
RISB1156
Nicrophorus concolor
Order: Coleoptera
produces Antimicrobial compounds
0.10%
10.7
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
0.78%
10.5
Aeromonas
RISB1145
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.11%
10.5
Paenibacillus polymyxa
RISB2195
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.32%
10.3
Listeria monocytogenes
RISB2308
Drosophila melanogaster
Order: Diptera
L. monocytogenes infection disrupts host energy metabolism by depleting energy stores (triglycerides and glycogen) and reducing metabolic pathway activity (beta-oxidation and glycolysis). The infection affects antioxidant defense by reducing uric acid levels and alters amino acid metabolism. These metabolic changes are accompanied by melanization, potentially linked to decreased tyrosine levels.
0.25%
10.3
Wolbachia pipientis
RISB0766
Aedes fluviatilis
Order: Diptera
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
0.06%
10.1
Stenotrophomonas maltophilia
RISB1122
Bombyx mori
Order: Lepidoptera
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
0.64%
9.6
Buchnera aphidicola
RISB0685
Acyrthosiphon pisum
Order: Hemiptera
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
0.78%
9.6
Clostridium sp. 'deep sea'
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.26%
9.5
Streptomyces sp. T12
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.51%
9.5
Escherichia coli
RISB2120
Galleria mellonella
Order: Lepidoptera
mediate trans-generational immune priming
3.58%
9.4
Clostridium sp. DL-VIII
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.10%
9.3
Clostridium sp. JS66
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.09%
9.3
Streptomyces sp. T12
RISB2334
Sirex noctilio
Order: Hymenoptera
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
0.51%
9.2
Mammaliicoccus sciuri
RISB0075
Bombyx mori
Order: Lepidoptera
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
0.21%
9.2
Staphylococcus xylosus
RISB2497
Anticarsia gemmatalis
Order: Lepidoptera
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
0.07%
9.1
Paenibacillus sp. IHB B 3084
RISB0774
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.24%
8.5
Blattabacterium cuenoti
RISB0133
Panesthiinae
Order: Blattodea
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
0.50%
8.4
Stenotrophomonas maltophilia
RISB1227
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.64%
8.3
Klebsiella pneumoniae
RISB2459
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
2.23%
8.2
Wolbachia pipientis
RISB1515
Drosophila melanogaster
Order: Diptera
increases the recombination rate observed across two genomic intervals and increases the efficacy of natural selection in hosts
0.06%
7.6
Enterobacter cloacae
RISB1699
Plutella xylostella
Order: Lepidoptera
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
0.09%
7.6
Carnobacterium maltaromaticum
RISB1693
Plutella xylostella
Order: Lepidoptera
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
0.06%
7.6
Enterobacter cloacae
RISB2217
Thermobia domestica
Order: Zygentoma
Mediated by two microbial symbiont, the firebat saggregates in response to the faeces of conspecifics
0.09%
7.1
Carnobacterium maltaromaticum
RISB1692
Plutella xylostella
Order: Lepidoptera
participate in the synthesis of host lacking amino acids histidine and threonine
0.06%
6.7
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
1.60%
6.6
Lysinibacillus fusiformis
RISB1417
Psammotermes hypostoma
Order: Blattodea
isolates showed significant cellulolytic activity
0.29%
6.3
Blattabacterium cuenoti
RISB0518
Cryptocercus punctulatus
Order: Blattodea
collaborative arginine biosynthesis
0.50%
6.2
Proteus vulgaris
RISB2460
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
0.12%
6.1
Lactiplantibacillus plantarum
RISB0674
Drosophila melanogaster
Order: Diptera
could effectively inhibit fungal spore germinations
0.10%
6.1
Providencia rettgeri
RISB1001
Anastrepha obliqua
Order: Diptera
improve the sexual competitiveness of males
0.20%
6.1
Blattabacterium cuenoti
RISB0093
Blattella germanica
Order: Blattodea
obligate endosymbiont
0.50%
5.9
Carnobacterium maltaromaticum
RISB1691
Plutella xylostella
Order: Lepidoptera
activity of cellulose and hemicellulose
0.06%
5.8
Providencia rettgeri
RISB1169
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
0.20%
5.8
Chryseobacterium sp. MEBOG06
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.09%
5.7
Chryseobacterium sp. MYb264
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.06%
5.6
Flavobacterium johnsoniae
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
0.21%
5.2
Providencia rettgeri
RISB1352
Nasonia vitripennis
Order: Hymenoptera
None
0.20%
5.2
Lactobacillus
RISB1866
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.18%
5.2
Candidatus Erwinia haradaeae
RISB1632
Lachninae
Order: Hemiptera
None
0.12%
5.1
Lactiplantibacillus plantarum
RISB0608
Drosophila melanogaster
Order: Diptera
None
0.10%
5.1
Candidatus Cardinium
RISB0223
Bemisia tabaci
Order: Hemiptera
Cardinium could inhibit the defense response of the host plant and decrease the detoxification metabolism ability of the host whitefly, decrease the expression of detoxification metabolism genes, especially the uridine 5'-diphospho-glucuronyltransferase and P450 genes,
0.08%
5.1
Candidatus Cardinium
RISB1439
Lutzomyia evansi
Order: Diptera
‘Candidatus Cardinium’ is a recently described bacterium from the Bacteroidetes group involved in diverse reproduction alterations of its arthropod hosts (including cytoplasmic incompatibility, parthenogenesis, and feminization) similar to Wolbachia
0.08%
5.1
Candidatus Karelsulcia muelleri
RISB1591
Philaenus spumarius
Order: Hemiptera
None
0.04%
5.0
Treponema
RISB2377
termite
Order: Blattodea
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
0.13%
5.0
Xanthomonas
RISB0498
Xylocopa appendiculata
Order: Hymenoptera
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
0.30%
4.1
Lactobacillus
RISB0292
Lymantria dispar asiatica
Order: Lepidoptera
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
0.18%
3.5
Candidatus Blochmanniella
RISB2542
Camponotus
Order: Hymenoptera
Blochmannia provide essential amino acids to its host,Camponotus floridanus, and that it may also play a role in nitrogen recycling via its functional urease
0.10%
3.2
Candidatus Blochmanniella
RISB1827
Camponotus floridanus
Order: Hymenoptera
a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission
0.10%
3.2
Lactobacillus
RISB0715
Spodoptera frugiperda
Order: Lepidoptera
Have the function of nutrient absorption, energy metabolism, the plant’s secondary metabolites degradation, insect immunity regulation, and so on
0.18%
3.1
Bacteroides
RISB0256
Leptocybe invasa
Order: Hymenoptera
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
0.77%
3.1
Bacteroides
RISB0090
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.77%
2.9
Candidatus Blochmanniella
RISB2448
Camponotus floridanus
Order: Hymenoptera
nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling
0.10%
2.8
Sphingobacterium
RISB1226
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.13%
2.8
Streptococcus
RISB2625
Galleria mellonella
Order: Lepidoptera
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
0.41%
2.4
Candidatus Cardinium
RISB2290
Sogatella furcifera
Order: Hemiptera
dual infection with Cardinium and Wolbachia induced strong cytoplasmic incompatibility (CI) in a single host
0.08%
2.2
Xanthomonas
RISB0217
Xylocopa appendiculata
Order: Hymenoptera
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
0.30%
2.2
Streptococcus
RISB2624
Reticulitermes flavipes
Order: Blattodea
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
0.41%
2.1
Streptococcus
RISB2604
Homona magnanima
Order: Lepidoptera
influence the growth of Bacillus thuringiensis in the larvae
0.41%
1.6
Sphingobacterium
RISB1400
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
0.13%
1.5
Massilia
RISB2151
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.05%
1.4
Actinomyces
RISB1234
Hermetia illucens
Order: Diptera
provides the tools for degrading of a broad range of substrates
0.05%
1.3
Paraclostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.24%
1.3
Cupriavidus
RISB0694
Alydus tomentosus
Order: Hemiptera
None
0.94%
0.9
Aeromonas
RISB2456
Bombyx mori
Order: Lepidoptera
able to utilize the CMcellulose and xylan
0.11%
0.9
Priestia
RISB0839
Helicoverpa armigera
Order: Lepidoptera
producing amylase
0.58%
0.9
Aeromonas
RISB2086
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.11%
0.7
Peribacillus
RISB1877
Aedes aegypti
Order: Diptera
gut microbiome
0.33%
0.6
Metabacillus
RISB0902
Myzus persicae
Order: Hemiptera
None
0.48%
0.5
Legionella
RISB1687
Polyplax serrata
Order: Phthiraptera
None
0.41%
0.4
Helicobacter
RISB0662
Melanaphis bambusae
Order: Hemiptera
None
0.19%
0.2
Treponema
RISB0169
Reticulitermes flaviceps
Order: Blattodea
None
0.13%
0.1
Myroides
RISB0626
Musca altica
Order: Diptera
None
0.12%
0.1
Halomonas
RISB1374
Bemisia tabaci
Order: Hemiptera
None
0.10%
0.1

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR5342714
1.6 GB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table