SRR3736777 - Bactrocera oleae
Basic Information
Run: SRR3736777
Assay Type: WGS
Bioproject: PRJNA326914
Biosample: SAMN05294122
Bytes: 442340163
Center Name: UNIVERSITY OF LIVERPOOL
Sequencing Information
Instrument: Illumina MiSeq
Library Layout: PAIRED
Library Selection: RANDOM
Platform: ILLUMINA
Geographic Information
Country: Greece
Continent: Europe
Location Name: Greece:Crete
Latitude/Longitude: 35.35 N 24.45 E
Sample Information
Host: Bactrocera oleae
Isolation: -
Biosample Model: Metagenome or environmental
Collection Date: 2015-12
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Staphylococcus epidermidis
Species-level Match
|
RISB1070 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
59.81% |
65.0
|
Wolbachia
Host Order Match
|
RISB0766 |
Aedes fluviatilis
Order: Diptera
|
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
|
19.37% |
34.4
|
Wolbachia
Host Order Match
|
RISB0779 |
Drosophila melanogaster
Order: Diptera
|
Wolbachia infection affects differential gene expression in Drosophila testis.Genes involved in carbohydrate metabolism, lysosomal degradation, proteolysis, lipid metabolism, and immune response were upregulated in the presence of Wolbachia
|
19.37% |
34.2
|
Wolbachia
Host Order Match
|
RISB1408 |
Anastrepha fraterculus
Order: Diptera
|
Wolbachia is the only known reproductive symbiont present in these morphotypes. Wolbachia reduced the ability for embryonic development in crosses involving cured females and infected males within each morphotype (uni-directional CI).
|
19.37% |
34.1
|
Klebsiella michiganensis
Species-level Match
Host Order Match
|
RISB1052 |
Bactrocera dorsalis
Order: Diptera
|
K. michiganensis BD177 has the strain-specific ability to provide three essential amino acids (phenylalanine, tryptophan and methionine) and two vitamins B (folate and riboflavin) to B. dorsalis
|
0.01% |
18.9
|
Serratia marcescens
Species-level Match
Host Order Match
|
RISB1291 |
Aedes aegypti
Order: Diptera
|
facilitates arboviral infection through a secreted protein named SmEnhancin, which digests membrane-bound mucins on the mosquito gut epithelia, thereby enhancing viral dissemination.
|
0.07% |
18.7
|
Klebsiella michiganensis
Species-level Match
Host Order Match
|
RISB1131 |
Bactrocera dorsalis
Order: Diptera
|
promotes host resistance to low-temperature stress by stimulating its arginine and proline metabolism pathway in adult Bactrocera dorsalis
|
0.01% |
17.8
|
Serratia marcescens
Species-level Match
Host Order Match
|
RISB0009 |
Phormia regina
Order: Diptera
|
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
0.07% |
17.8
|
Serratia plymuthica
Species-level Match
Host Order Match
|
RISB1225 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.02% |
17.7
|
Klebsiella sp. PL-2018
Species-level Match
Host Order Match
|
RISB0917 |
Aedes aegypti
Order: Diptera
|
could impact larval development (e.g., spermidine)
|
0.08% |
16.1
|
Erwinia aphidicola
Species-level Match
Host Order Match
|
RISB1705 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.57% |
15.6
|
Staphylococcus hominis
Species-level Match
Host Order Match
|
RISB1881 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.02% |
15.3
|
Paenibacillus
Host Order Match
|
RISB0774 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
1.93% |
15.2
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB1769 |
Calliphoridae
Order: Diptera
|
None
|
0.03% |
15.0
|
Enterobacter
Host Order Match
|
RISB0129 |
Ceratitis capitata
Order: Diptera
|
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
|
0.01% |
15.0
|
Enterobacter
Host Order Match
|
RISB1338 |
Ceratitis capitata
Order: Diptera
|
Enterobacter sp. AA26 dry biomass can fully replace the brewer’s yeast as a protein source in medfly larval diet without any effect on the productivity and the biological quality of reared medfly of VIENNA 8 GSS
|
0.01% |
14.2
|
Enterobacter
Host Order Match
|
RISB1223 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.01% |
12.7
|
Proteus
Host Order Match
|
RISB2315 |
Aedes aegypti
Order: Diptera
|
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
|
0.56% |
12.7
|
Paenibacillus
Host Order Match
|
RISB2098 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
1.93% |
12.5
|
Proteus
Host Order Match
|
RISB0054 |
Episyrphus balteatus
Order: Diptera
|
None
|
0.56% |
10.6
|
Pantoea agglomerans
Species-level Match
|
RISB2197 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.27% |
10.3
|
Vagococcus
Host Order Match
|
RISB0042 |
Aldrichina grahami
Order: Diptera
|
None
|
0.18% |
10.2
|
Streptomyces sp. NBC_00358
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
1.06% |
10.0
|
Streptomyces sp. NBC_00358
Species-level Match
|
RISB2334 |
Sirex noctilio
Order: Hymenoptera
|
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
|
1.06% |
9.8
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
0.03% |
9.4
|
Spiroplasma sp. SV19
Species-level Match
|
RISB1353 |
Cephus cinctus
Order: Hymenoptera
|
The bacterium also encoded biosynthetic pathways for essential vitamins B2, B3, and B9. We identified putative Spiroplasma virulence genes: cardiolipin and chitinase.
|
0.20% |
8.5
|
Streptomyces sp. NBC_00358
Species-level Match
|
RISB1134 |
mud dauber wasp
Order: Hymenoptera
|
secondary metabolites derived from a Streptomyces sp. displayed significant inhibitory activity against hexokinase II
|
1.06% |
8.4
|
Escherichia coli
Species-level Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
0.03% |
7.8
|
Pantoea agglomerans
Species-level Match
|
RISB2579 |
Schistocerca gregaria
Order: Orthoptera
|
produces an antifungal and antibacterial molecule serving as antimicrobial defense against gut pathogens
|
0.27% |
7.4
|
Paenibacillus
|
RISB2195 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
1.93% |
6.9
|
Erwinia sp. HDF1-3R
Species-level Match
|
RISB0808 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-12 oxidation pathway
|
0.01% |
6.4
|
Pantoea agglomerans
Species-level Match
|
RISB0379 |
Frankliniella occidentalis
Order: Thysanoptera
|
gut symbionts are required for their development
|
0.27% |
6.2
|
Erwinia sp. HDF1-3R
Species-level Match
|
RISB1986 |
Bombyx mori
Order: Lepidoptera
|
producing cellulase and amylase
|
0.01% |
5.6
|
Burkholderia
|
RISB1172 |
Lagria villosa
Order: Coleoptera
|
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
|
0.42% |
5.4
|
Staphylococcus hominis
Species-level Match
|
RISB1071 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.02% |
5.2
|
Salmonella enterica
Species-level Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
0.02% |
5.0
|
Burkholderia
|
RISB1729 |
Lagria hirta
Order: Coleoptera
|
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
|
0.42% |
4.7
|
Burkholderia
|
RISB0402 |
Riptortus pedestris
Order: Hemiptera
|
symbiont colonization induces the development of the midgut crypts via finely regulating the enterocyte cell cycles, enabling it to stably and abundantly colonize the generated spacious crypts of the bean bug host
|
0.42% |
4.7
|
Clostridium
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.28% |
4.5
|
Symbiopectobacterium
|
RISB1889 |
Pseudococcus longispinus
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.01% |
3.4
|
Proteus
|
RISB0001 |
Leptinotarsa decemlineata
Order: Coleoptera
|
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
|
0.56% |
3.3
|
Yersinia
|
RISB0492 |
Cimex hemipterus
Order: Hemiptera
|
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
|
0.34% |
2.8
|
Bacteroides
|
RISB0256 |
Leptocybe invasa
Order: Hymenoptera
|
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
|
0.19% |
2.5
|
Bacteroides
|
RISB0090 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.19% |
2.3
|
Bacteroides
|
RISB1183 |
Oryzaephilus surinamensis
Order: Coleoptera
|
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
|
0.19% |
2.2
|
Clostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.28% |
1.3
|
Cronobacter
|
RISB0247 |
Tenebrio molitor
Order: Coleoptera
|
may be indirectly involved in the digestion of PE
|
0.02% |
1.0
|
Yersinia
|
RISB0407 |
Anaphes nitens
Order: Hymenoptera
|
None
|
0.34% |
0.3
|
Clostridium
|
RISB1959 |
Pyrrhocoridae
Order: Hemiptera
|
None
|
0.28% |
0.3
|
Cupriavidus
|
RISB0694 |
Alydus tomentosus
Order: Hemiptera
|
None
|
0.01% |
0.0
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.