SRR3499636 - Negative control

Basic Information

Run: SRR3499636

Assay Type: WGS

Bioproject: PRJNA321195

Biosample: SAMN04978006

Bytes: 187464965

Center Name: BSRI

Sequencing Information

Instrument: Illumina MiSeq

Library Layout: PAIRED

Library Selection: RANDOM

Platform: ILLUMINA

Geographic Information

Country: USA

Continent: North America

Location Name: USA: Pennsylvania

Latitude/Longitude: 40.38002840 N 76.02538062 W

Sample Information

Host: Negative control

Isolation: mushroom farm

Biosample Model: Metagenome or environmental

Collection Date: 2016-01-01

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Pseudomonas sp. CIP-10
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
2.71%
12.5
Klebsiella pneumoniae
RISB2185
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
2.18%
12.2
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
2.83%
12.2
Delftia
RISB0083
Osmia cornifrons
Order: Hymenoptera
be known to exhibit antibiotic activity, suggesting their potential protective role against pathogens
10.09%
12.1
Delftia
RISB0806
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-19 oxidation pathway
10.09%
11.5
Delftia
RISB1754
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
10.09%
11.2
Pseudomonas sp. CIP-10
RISB2224
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
2.71%
11.1
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
2.83%
10.6
Bacillus thuringiensis
RISB2177
Armadillidae
Order: Isopoda
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.52%
10.5
Pseudomonas sp. FP833
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.39%
10.2
Bacillus thuringiensis
RISB0109
Tuta absoluta
Order: Lepidoptera
Individual exposure of B. thuringiensis isolates to P. absoluta revealed high susceptibility of the pest and could potentially be used to develop effective, safe and affordable microbial pesticides for the management of P. absoluta.
0.52%
10.2
Bacillus cereus
RISB2161
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.13%
10.1
Enterobacter sp. T2
RISB0893
Bactrocera dorsalis
Order: Diptera
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
0.04%
10.0
Acinetobacter sp. SCLZS86
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.23%
9.9
Streptomyces sp. ICC1
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.87%
9.8
Acinetobacter sp. SWBY1
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.06%
9.7
Acinetobacter sp. WCHA45
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.03%
9.7
Stenotrophomonas maltophilia
RISB1122
Bombyx mori
Order: Lepidoptera
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
0.65%
9.7
Streptomyces sp. ICC1
RISB2334
Sirex noctilio
Order: Hymenoptera
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
0.87%
9.6
Enterobacter sp. T2
RISB1338
Ceratitis capitata
Order: Diptera
Enterobacter sp. AA26 dry biomass can fully replace the brewer’s yeast as a protein source in medfly larval diet without any effect on the productivity and the biological quality of reared medfly of VIENNA 8 GSS
0.04%
9.3
Streptomyces sp. ICC4
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.16%
9.1
Klebsiella michiganensis
RISB1052
Bactrocera dorsalis
Order: Diptera
K. michiganensis BD177 has the strain-specific ability to provide three essential amino acids (phenylalanine, tryptophan and methionine) and two vitamins B (folate and riboflavin) to B. dorsalis
0.10%
9.0
Escherichia coli
RISB2120
Galleria mellonella
Order: Lepidoptera
mediate trans-generational immune priming
2.83%
8.7
Enterobacter sp. T2
RISB2221
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.04%
8.4
Stenotrophomonas maltophilia
RISB1227
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.65%
8.4
Klebsiella pneumoniae
RISB2459
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
2.18%
8.2
Citrobacter freundii complex sp. CFNIH2
RISB0517
Leptinotarsa decemlineata
Order: Coleoptera
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
0.07%
8.0
Citrobacter freundii complex sp. CFNIH2
RISB0127
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.07%
7.8
Citrobacter freundii complex sp. CFNIH2
RISB1221
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.07%
7.8
Enterococcus faecalis
RISB0497
Cryptolestes ferrugineus
Order: Coleoptera
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
0.05%
7.6
Enterococcus faecalis
RISB1411
Bactrocera dorsalis
Order: Diptera
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
0.05%
7.6
Carnobacterium maltaromaticum
RISB1693
Plutella xylostella
Order: Lepidoptera
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
0.03%
7.5
Psychrobacter sp. P2G3
RISB1773
Calliphoridae
Order: Diptera
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
0.02%
7.5
Stenotrophomonas maltophilia
RISB1141
Hermetia illucens
Order: Diptera
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
0.65%
7.5
Enterococcus faecalis
RISB2042
Harpalus pensylvanicus
Order: Coleoptera
E. faecalis facilitate seed consumption by H. pensylvanicus, possibly by contributing digestive enzymes to their host
0.05%
7.4
Burkholderia
RISB1172
Lagria villosa
Order: Coleoptera
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
2.08%
7.1
Leclercia adecarboxylata
RISB1757
Spodoptera frugiperda
Order: Lepidoptera
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
0.03%
6.9
Serratia proteamaculans
RISB1846
Dendroctonus adjunctus
Order: Coleoptera
display strong cellulolytic activity and process a single endoglucanase encoding gene
0.06%
6.8
Carnobacterium maltaromaticum
RISB1692
Plutella xylostella
Order: Lepidoptera
participate in the synthesis of host lacking amino acids histidine and threonine
0.03%
6.6
Burkholderia
RISB1729
Lagria hirta
Order: Coleoptera
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
2.08%
6.4
Burkholderia
RISB0402
Riptortus pedestris
Order: Hemiptera
symbiont colonization induces the development of the midgut crypts via finely regulating the enterocyte cell cycles, enabling it to stably and abundantly colonize the generated spacious crypts of the bean bug host
2.08%
6.3
Leclercia adecarboxylata
RISB1758
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.03%
6.2
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
0.93%
5.9
Carnobacterium maltaromaticum
RISB1691
Plutella xylostella
Order: Lepidoptera
activity of cellulose and hemicellulose
0.03%
5.8
Comamonas testosteroni
RISB1875
Aedes aegypti
Order: Diptera
gut microbiome
0.07%
5.4
Staphylococcus epidermidis
RISB1070
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.06%
5.3
Serratia grimesii
RISB0405
Anaphes nitens
Order: Hymenoptera
None
0.06%
5.1
Lactococcus
RISB0131
Ceratitis capitata
Order: Diptera
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The  colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
0.06%
5.1
Thauera sp. K11
RISB1711
Phlebotomus papatasi
Order: Diptera
None
0.05%
5.1
Bifidobacterium
RISB0174
Apis mellifera
Order: Hymenoptera
Bifidobacterium provides complementary demethylation service to promote Gilliamella growth on methylated homogalacturonan, an enriched polysaccharide of pectin. In exchange, Gilliamella shares digestive products with Bifidobacterium, through which a positive interaction is established
0.03%
5.0
Agrobacterium tumefaciens
RISB0650
Melanaphis bambusae
Order: Hemiptera
None
0.02%
5.0
Rahnella
RISB1623
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.03%
4.9
Lactococcus
RISB2305
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.06%
4.3
Clostridium
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.02%
4.2
Xanthomonas
RISB0498
Xylocopa appendiculata
Order: Hymenoptera
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
0.02%
3.8
Lactococcus
RISB0967
Oulema melanopus
Order: Coleoptera
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
0.06%
3.6
Bifidobacterium
RISB0616
Spodoptera frugiperda
Order: Lepidoptera
Strain wkB204 grew in the presence of amygdalin as the sole carbon source, suggesting that this strain degrades amygdalin and is not susceptible to the potential byproducts
0.03%
3.5
Methylobacterium
RISB1440
Lutzomyia evansi
Order: Diptera
Methylobacterium can be important in several physiological and metabolic processes in Lu. evansi, which suggests that interactions could occur with Leishmania parasite
0.10%
3.4
Ralstonia
RISB0243
Spodoptera frugiperda
Order: Lepidoptera
None
2.84%
2.8
Variovorax
RISB2153
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
1.40%
2.7
Yersinia
RISB0492
Cimex hemipterus
Order: Hemiptera
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
0.28%
2.7
Bradyrhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
1.09%
2.7
Bartonella
RISB1673
Apis mellifera
Order: Hymenoptera
a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream
0.01%
2.6
Streptococcus
RISB2625
Galleria mellonella
Order: Lepidoptera
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
0.43%
2.5
Bacteroides
RISB0256
Leptocybe invasa
Order: Hymenoptera
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
0.08%
2.4
Liberibacter
RISB2310
Bactericerca cockerelli
Order: Hemiptera
manipulate plant signaling and defensive responses, suppress accumulation of defense transcripts like JA and SA
0.02%
2.3
Corynebacterium
RISB0363
Pagiophloeus tsushimanus
Order: Coleoptera
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
0.50%
2.3
Diaphorobacter
RISB2150
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.93%
2.2
Rahnella
RISB1800
Dendroctonus valens
Order: Coleoptera
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth
0.03%
2.2
Bacteroides
RISB0090
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.08%
2.2
Corynebacterium
RISB0531
Helicoverpa armigera
Order: Lepidoptera
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
0.50%
2.2
Bacteroides
RISB1183
Oryzaephilus surinamensis
Order: Coleoptera
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
0.08%
2.1
Rahnella
RISB0741
Dendroctonus ponderosae
Order: Coleoptera
R. aquatilis decreased (−)-α-pinene (38%) and (+)-α-pinene (46%) by 40% and 45% (by GC-MS), respectively
0.03%
2.1
Sphingomonas
RISB0420
Aphis gossypii
Order: Hemiptera
Sphingomonas could mediate A. gossypii resistance to imidacloprid by hydroxylation and nitroreduction
0.09%
2.1
Streptococcus
RISB2624
Reticulitermes flavipes
Order: Blattodea
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
0.43%
2.1
Xanthomonas
RISB0217
Xylocopa appendiculata
Order: Hymenoptera
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
0.02%
2.0
Sphingomonas
RISB1307
Aphis gossypii
Order: Hemiptera
have been previously described in associations with phloem-feeding insects, in low abundances
0.09%
2.0
Sphingomonas
RISB0134
Spodoptera frugiperda
Order: Lepidoptera
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
0.09%
1.7
Liberibacter
RISB2524
Bactericera cockerelli
Order: Hemiptera
Reduced expression of plant defensive gene in tomato probably for psyllid success
0.02%
1.6
Streptococcus
RISB2604
Homona magnanima
Order: Lepidoptera
influence the growth of Bacillus thuringiensis in the larvae
0.43%
1.6
Massilia
RISB2151
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.20%
1.5
Variovorax
RISB1712
Phlebotomus papatasi
Order: Diptera
None
1.40%
1.4
Duganella
RISB2152
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.10%
1.4
Halomonas
RISB1808
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.03%
1.4
Corynebacterium
RISB2360
Bombyx mori
Order: Lepidoptera
producing lipase in a gut environment
0.50%
1.3
Komagataeibacter
RISB1883
Drosophila suzukii
Order: Diptera
produce volatile substances that attract female D. suzukii
0.07%
1.2
Diaphorobacter
RISB1062
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.93%
1.2
Clostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.02%
1.1
Liberibacter
RISB2333
Cacopsylla pyri
Order: Hemiptera
behaves as an endophyte rather than a pathogen
0.02%
0.9
Aeromonas
RISB2456
Bombyx mori
Order: Lepidoptera
able to utilize the CMcellulose and xylan
0.03%
0.9
Curtobacterium
RISB1910
Hyles euphorbiae
Order: Lepidoptera
able to degrade alkaloids and/or latex
0.08%
0.8
Methylobacterium
RISB2053
Atractomorpha sinensis
Order: Orthoptera
associated with cellulolytic enzymes
0.10%
0.8
Cupriavidus
RISB0694
Alydus tomentosus
Order: Hemiptera
None
0.68%
0.7
Chryseobacterium
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.06%
0.6
Aeromonas
RISB2086
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.03%
0.6
Methylobacterium
RISB2340
Saturniidae
Order: Lepidoptera
Nitrogen fixation
0.10%
0.4
Aeromonas
RISB1145
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.03%
0.4
Chryseobacterium
RISB1874
Aedes aegypti
Order: Diptera
gut microbiome
0.06%
0.3
Achromobacter
RISB1869
Aedes aegypti
Order: Diptera
gut microbiome
0.06%
0.3
Yersinia
RISB0407
Anaphes nitens
Order: Hymenoptera
None
0.28%
0.3
Neisseria
RISB0512
Plutella xylostella
Order: Lepidoptera
None
0.25%
0.3
Curtobacterium
RISB0900
Myzus persicae
Order: Hemiptera
None
0.08%
0.1
Chryseobacterium
RISB0015
Aedes aegypti
Order: Diptera
None
0.06%
0.1
Achromobacter
RISB0383
Aphis gossypii
Order: Hemiptera
None
0.06%
0.1
Bifidobacterium
RISB1944
Apis cerana
Order: Hymenoptera
None
0.03%
0.0
Halomonas
RISB1374
Bemisia tabaci
Order: Hemiptera
None
0.03%
0.0
Paraburkholderia
RISB0125
Physopelta gutta
Order: Hemiptera
None
0.03%
0.0
Clostridium
RISB1959
Pyrrhocoridae
Order: Hemiptera
None
0.02%
0.0

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR3499636
178.8 MB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table