SRR3312806 - Trioza apicalis
Basic Information
Run: SRR3312806
Assay Type: WGS
Bioproject: PRJNA312579
Biosample: SAMN04500800
Bytes: 3718339098
Center Name: UNIVERSITY OF HELSINKI
Sequencing Information
Instrument: Illumina HiSeq 2000
Library Layout: PAIRED
Library Selection: RANDOM
Platform: ILLUMINA
Geographic Information
Country: Finland
Continent: Europe
Location Name: Finland: Forssa
Latitude/Longitude: 60.8 N 23.5 E
Sample Information
Host: Trioza apicalis
Isolation: carrot field
Biosample Model: Microbe\, viral or environmental
Collection Date: 2012-06
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Candidatus Liberibacter asiaticus
Species-level Match
Host Order Match
|
RISB1077 |
Diaphorina citri
Order: Hemiptera
|
CLas exposure altered the abundance of proteins involved in immunity and cellular and oxidative stress in a sex-dependent manner. Also, Clas impacted cuticular proteins and enzymes involved in chitin degradation, as well as energy metabolism and abundance of the endosymbiont 'Candidatus Profftella armatura' in both sexes similarly
|
0.57% |
20.6
|
Buchnera aphidicola
Species-level Match
Host Order Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
0.51% |
20.5
|
Buchnera aphidicola
Species-level Match
Host Order Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
0.51% |
20.3
|
Serratia symbiotica
Species-level Match
Host Order Match
|
RISB0576 |
Acyrthosiphon pisum
Order: Hemiptera
|
process of regression from winged to wingless morph was inhibited by Serratia symbiotica. The existence of the symbiont did not affect the body mass and fecundity of adult aphids, but it increased the body weight of nymphs and temporally increased the quantity of a primary symbiont, Buchnera aphidicola
|
0.01% |
20.0
|
Serratia marcescens
Species-level Match
Host Order Match
|
RISB0747 |
Rhodnius prolixus
Order: Hemiptera
|
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
|
0.01% |
19.7
|
Serratia symbiotica
Species-level Match
Host Order Match
|
RISB0179 |
Acyrthosiphon pisum
Order: Hemiptera
|
harboring Serratia improved host aphid growth and fecundity but reduced longevity. Serratia defends aphids against P. japonica by impeding the predator's development and predation capacity, and modulating its foraging behavior
|
0.01% |
19.5
|
Buchnera aphidicola
Species-level Match
Host Order Match
|
RISB0685 |
Acyrthosiphon pisum
Order: Hemiptera
|
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
|
0.51% |
19.3
|
Clostridium sp. DL-VIII
Species-level Match
Host Order Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.03% |
19.3
|
Clostridium sp. AWRP
Species-level Match
Host Order Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.01% |
19.2
|
Candidatus Carsonella ruddii
Species-level Match
Host Order Match
|
RISB0394 |
Cacopsylla pyricola
Order: Hemiptera
|
Carsonella produces most essential amino acids (EAAs) for C. pyricola, Psyllophila complements the genes missing in Carsonella for the tryptophan pathway and synthesizes some vitamins and carotenoids
|
0.10% |
19.1
|
Candidatus Schneideria nysicola
Species-level Match
Host Order Match
|
RISB0872 |
Nysius sp.
Order: Hemiptera
|
synthesize four B vitamins(Pan, pantothenate;Fol, folate; Rib, riboflavin; Pyr, pyridoxine) and five Essential Amino Acids(Ile, isoleucine; Val, valine; Lys, lysine; Thr, threonine; Phe, phenylalanine)
|
0.01% |
19.0
|
Candidatus Portiera aleyrodidarum
Species-level Match
Host Order Match
|
RISB1193 |
Bemisia tabaci
Order: Hemiptera
|
synthesizing essential amino acid (e.g. tryptophan, leucine and L-Isoleucine), Bemisia tabaci provides vital nutritional support for growth, development and reproduction
|
0.01% |
18.4
|
Candidatus Mikella endobia
Species-level Match
Host Order Match
|
RISB1887 |
Paracoccus marginatus
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.04% |
18.4
|
Candidatus Gullanella endobia
Species-level Match
Host Order Match
|
RISB1885 |
Ferrisia virgata
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.01% |
18.4
|
Candidatus Tachikawaea gelatinosa
Species-level Match
Host Order Match
|
RISB2112 |
Urostylis westwoodii
Order: Hemiptera
|
the symbiont localizes to a specialized midgut region and supplies essential amino acids deficient in the host's diet
|
0.01% |
17.4
|
Candidatus Portiera aleyrodidarum
Species-level Match
Host Order Match
|
RISB2289 |
Bemisia tabaci
Order: Hemiptera
|
encoding the capability to synthetize, or participate in the synthesis of, several amino acids and carotenoids,
|
0.01% |
17.2
|
Candidatus Portiera aleyrodidarum
Species-level Match
Host Order Match
|
RISB1973 |
Bemisia tabaci
Order: Hemiptera
|
a primary symbiont, which compensates for the deficient nutritional composition of its food sources
|
0.01% |
17.0
|
Candidatus Ishikawella capsulata
Species-level Match
Host Order Match
|
RISB2368 |
Megacopta punctatissima
Order: Hemiptera
|
Microbe compensates for nutritional deficiency of host diet by supplying essential amino acids
|
0.02% |
16.9
|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB0700 |
Nilaparvata lugens
Order: Hemiptera
|
Pseudomonas sp. composition and abundance correlated with BPH survivability
|
0.26% |
16.8
|
Candidatus Ishikawella capsulata
Species-level Match
Host Order Match
|
RISB2543 |
Megacopta punctatissima
Order: Hemiptera
|
Enhance pest status of the insect host
|
0.02% |
15.8
|
Candidatus Liberibacter asiaticus
Species-level Match
Host Order Match
|
RISB0750 |
Diaphorina citri
Order: Hemiptera
|
None
|
0.57% |
15.6
|
Salmonella enterica
Species-level Match
Host Order Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
0.18% |
15.2
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB0412 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
0.14% |
15.1
|
Candidatus Carsonella ruddii
Species-level Match
Host Order Match
|
RISB0748 |
Diaphorina citri
Order: Hemiptera
|
None
|
0.10% |
15.1
|
Candidatus Erwinia haradaeae
Species-level Match
Host Order Match
|
RISB1632 |
Lachninae
Order: Hemiptera
|
None
|
0.04% |
15.0
|
Candidatus Palibaumannia cicadellinicola
Species-level Match
Host Order Match
|
RISB1594 |
Graphocephala coccinea
Order: Hemiptera
|
None
|
0.04% |
15.0
|
Staphylococcus xylosus
Species-level Match
Host Order Match
|
RISB0672 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.04% |
15.0
|
Arsenophonus
Host Order Match
|
RISB1047 |
Aphis gossypii
Order: Hemiptera
|
secondary symbiont reduction led to reduction of the total life span and intrinsic rate of natural increase as well as appearance of the deformed dead offspring. H. defensa and Arsenophonus contributed to the fitness of A. gossypii by enhancing its performance, but not through parasitoid resistance.
|
0.02% |
15.0
|
Candidatus Annandia adelgestsuga
Species-level Match
Host Order Match
|
RISB2207 |
Adelges tsugae
Order: Hemiptera
|
None
|
0.01% |
15.0
|
Acinetobacter
Host Order Match
|
RISB0140 |
Nilaparvata lugens
Order: Hemiptera
|
Acinetobacter can effectively degrade cellulose and harmful substances such as polystyrene and phenol.It can help the short-winged BPH to improve its detoxification ability in harsh environments and adapt to environmental changes at any time.
|
0.03% |
14.9
|
Arsenophonus
Host Order Match
|
RISB1300 |
Aphis gossypii
Order: Hemiptera
|
Arsenophonus sp. can have different effects on its hosts, including obligate mutualism in blood-sucking insects, improving the performance of whiteflies, or through facultative mutualism by protecting psyllids against parasitoid attacks.
|
0.02% |
14.8
|
Wolbachia
Host Order Match
|
RISB1444 |
Laodelphax striatellus
Order: Hemiptera
|
Wolbachia-infected host embryonic development genes revealed Ddx1 mRNAs, which is required for host viability and in the germ line, accumulated in the posterior region of 3-day-old embryos
|
0.55% |
14.3
|
Wolbachia
Host Order Match
|
RISB1539 |
Cimex lectularius
Order: Hemiptera
|
wCle provisions the bed bug with B vitamins.It is likely that because of wCle’s nutritional contribution to the bed bug, its titer increases in relation to bed bug growth and development.
|
0.55% |
14.3
|
Rickettsiella
Host Order Match
|
RISB2479 |
Acyrthosiphon pisum
Order: Hemiptera
|
changes the insects’ body color from red to green in natural populations, the infection increased amounts of blue-green polycyclic quinones, whereas it had less of an effect on yellow-red carotenoid pigments
|
0.15% |
14.3
|
Lactococcus
Host Order Match
|
RISB2305 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.01% |
14.2
|
Arsenophonus
Host Order Match
|
RISB1334 |
Ommatissus lybicus
Order: Hemiptera
|
the removal of Arsenophonus increased the developmental time of the immature stages and reduced the values of different life-history parameters including nymphal survival rate and adult longevity in the host
|
0.02% |
14.2
|
Rickettsiella
Host Order Match
|
RISB2262 |
Acyrthosiphon pisum
Order: Hemiptera
|
against this entomopathogen Pandora neoaphidis, reduce mortality and also decrease fungal sporulation on dead aphids which may help protect nearby genetically identical insects
|
0.15% |
13.7
|
Rickettsiella
Host Order Match
|
RISB1739 |
Acyrthosiphon pisum
Order: Hemiptera
|
in an experiment with a single-injected isolate of Rickettsiella sp. wasps were also attracted to plants fed on by aphids without secondary symbionts
|
0.15% |
13.1
|
Wolbachia
Host Order Match
|
RISB0491 |
Cimex hemipterus
Order: Hemiptera
|
the disruption of the abundant Wolbachia could be related to the enhanced susceptibility towards the insecticides
|
0.55% |
12.8
|
Lactococcus
Host Order Match
|
RISB0337 |
Riptortus pedestris
Order: Hemiptera
|
can be utilized as a novel probiotic which increase the survival rate of insects
|
0.01% |
11.6
|
Acinetobacter
Host Order Match
|
RISB0579 |
Aleurodicus rugioperculatus
Order: Hemiptera
|
may indirectly affect whitefly oviposition
|
0.03% |
10.9
|
Bacillus thuringiensis
Species-level Match
|
RISB2177 |
Armadillidae
Order: Isopoda
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.29% |
10.3
|
Klebsiella pneumoniae
Species-level Match
|
RISB2185 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.24% |
10.2
|
Bacillus cereus
Species-level Match
|
RISB2161 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.09% |
10.1
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.26% |
10.1
|
Acinetobacter
Host Order Match
|
RISB0649 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.03% |
10.0
|
Candidatus Profftia
Host Order Match
|
RISB1664 |
Adelgidae
Order: Hemiptera
|
None
|
0.02% |
10.0
|
Aeromonas
Host Order Match
|
RISB2063 |
Sitobion miscanthi
Order: Hemiptera
|
None
|
0.02% |
10.0
|
Flavobacterium
Host Order Match
|
RISB0659 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.02% |
10.0
|
Listeria monocytogenes
Species-level Match
|
RISB2308 |
Drosophila melanogaster
Order: Diptera
|
L. monocytogenes infection disrupts host energy metabolism by depleting energy stores (triglycerides and glycogen) and reducing metabolic pathway activity (beta-oxidation and glycolysis). The infection affects antioxidant defense by reducing uric acid levels and alters amino acid metabolism. These metabolic changes are accompanied by melanization, potentially linked to decreased tyrosine levels.
|
0.01% |
10.0
|
Cupriavidus
Host Order Match
|
RISB0694 |
Alydus tomentosus
Order: Hemiptera
|
None
|
0.01% |
10.0
|
Bacillus thuringiensis
Species-level Match
|
RISB0109 |
Tuta absoluta
Order: Lepidoptera
|
Individual exposure of B. thuringiensis isolates to P. absoluta revealed high susceptibility of the pest and could potentially be used to develop effective, safe and affordable microbial pesticides for the management of P. absoluta.
|
0.29% |
9.9
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
0.14% |
9.5
|
Staphylococcus xylosus
Species-level Match
|
RISB2497 |
Anticarsia gemmatalis
Order: Lepidoptera
|
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
|
0.04% |
9.0
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1122 |
Bombyx mori
Order: Lepidoptera
|
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
|
0.02% |
9.0
|
Streptomyces sp. T12
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.04% |
9.0
|
Streptomyces sp. MUM 178J
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.01% |
9.0
|
Streptomyces sp. T12
Species-level Match
|
RISB2334 |
Sirex noctilio
Order: Hymenoptera
|
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
|
0.04% |
8.7
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB2224 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.26% |
8.6
|
Paenibacillus sp. PK4536
Species-level Match
|
RISB0774 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.06% |
8.3
|
Paenibacillus sp. FSL K6-3182
Species-level Match
|
RISB0774 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.01% |
8.3
|
Blattabacterium cuenoti
Species-level Match
|
RISB0133 |
Panesthiinae
Order: Blattodea
|
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
|
0.23% |
8.2
|
Wigglesworthia glossinidia
Species-level Match
|
RISB0369 |
Glossina morsitans
Order: Diptera
|
symbiont-derived factors, likely B vitamins, are critical for the proper function of both lipid biosynthesis and lipolysis to maintain tsetse fly fecundity
|
0.03% |
8.1
|
Citrobacter freundii
Species-level Match
|
RISB0517 |
Leptinotarsa decemlineata
Order: Coleoptera
|
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
|
0.08% |
8.0
|
Escherichia coli
Species-level Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
0.14% |
7.9
|
Citrobacter freundii
Species-level Match
|
RISB0127 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
0.08% |
7.8
|
Citrobacter freundii
Species-level Match
|
RISB1221 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.08% |
7.8
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1227 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.02% |
7.7
|
Wigglesworthia glossinidia
Species-level Match
|
RISB1786 |
Glossina morsitans
Order: Diptera
|
Synthesis of a large number of B vitamins, to supplement the host nutritional deficiencies of the diet
|
0.03% |
7.1
|
Snodgrassella alvi
Species-level Match
|
RISB1423 |
Bombus spp.
Order: Hymenoptera
|
The bumble bee microbiome slightly increases survivorship when the host is exposed to selenate
|
0.01% |
6.9
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1141 |
Hermetia illucens
Order: Diptera
|
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
|
0.02% |
6.8
|
Staphylococcus xylosus
Species-level Match
|
RISB2247 |
Anticarsia gemmatalis
Order: Lepidoptera
|
mitigation of the negative effects of proteinase inhibitors produced by the host plant
|
0.04% |
6.8
|
Candidatus Westeberhardia cardiocondylae
Species-level Match
|
RISB1794 |
Cardiocondyla obscurior
Order: Hymenoptera
|
Contributes to cuticle formation and is responsible for host invasive success
|
0.02% |
6.6
|
Paenibacillus sp. PK4536
Species-level Match
|
RISB0813 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-9 oxidation pathway
|
0.06% |
6.5
|
Klebsiella pneumoniae
Species-level Match
|
RISB2459 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
0.24% |
6.2
|
Wigglesworthia glossinidia
Species-level Match
|
RISB2577 |
Glossina brevipalpis
Order: Diptera
|
provide its tsetse host with metabolites such as vitamins
|
0.03% |
6.2
|
Candidatus Riesia pediculicola
Species-level Match
|
RISB2452 |
Pediculus humanus humanus
Order: Phthiraptera
|
supplement body lice nutritionally deficient blood diet
|
0.01% |
6.1
|
Candidatus Westeberhardia cardiocondylae
Species-level Match
|
RISB1795 |
Cardiocondyla obscurior
Order: Hymenoptera
|
a contribution of Westeberhardia to cuticle formation
|
0.02% |
6.1
|
Klebsiella pneumoniae
Species-level Match
|
RISB1994 |
Diatraea saccharalis
Order: Lepidoptera
|
possess cellulose degrading activity
|
0.24% |
6.0
|
Blattabacterium cuenoti
Species-level Match
|
RISB0518 |
Cryptocercus punctulatus
Order: Blattodea
|
collaborative arginine biosynthesis
|
0.23% |
5.9
|
Blattabacterium cuenoti
Species-level Match
|
RISB0093 |
Blattella germanica
Order: Blattodea
|
obligate endosymbiont
|
0.23% |
5.7
|
Lactococcus
|
RISB0131 |
Ceratitis capitata
Order: Diptera
|
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
|
0.01% |
5.0
|
Snodgrassella alvi
Species-level Match
|
RISB1947 |
Apis cerana
Order: Hymenoptera
|
None
|
0.01% |
5.0
|
Francisella
|
RISB1907 |
Bombyx mori
Order: Lepidoptera
|
After infection with F. tularensis, the induction of melanization and nodulation, which are immune responses to bacterial infection, were inhibited in silkworms. Pre-inoculation of silkworms with F. tularensis enhanced the expression of antimicrobial peptides and resistance to infection by pathogenic bacteria.
|
0.01% |
5.0
|
Sphingobium
|
RISB1837 |
Dendroctonus valens
Order: Coleoptera
|
It can trongly degrade naringenin, and pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and facilitate naringenin biodegradation by the microbiotas.
|
0.03% |
4.1
|
Candidatus Blochmanniella
|
RISB2542 |
Camponotus
Order: Hymenoptera
|
Blochmannia provide essential amino acids to its host,Camponotus floridanus, and that it may also play a role in nitrogen recycling via its functional urease
|
0.11% |
3.3
|
Candidatus Blochmanniella
|
RISB1827 |
Camponotus floridanus
Order: Hymenoptera
|
a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission
|
0.11% |
3.2
|
Candidatus Blochmanniella
|
RISB2448 |
Camponotus floridanus
Order: Hymenoptera
|
nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling
|
0.11% |
2.9
|
Proteus
|
RISB0001 |
Leptinotarsa decemlineata
Order: Coleoptera
|
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
|
0.01% |
2.7
|
Bartonella
|
RISB1673 |
Apis mellifera
Order: Hymenoptera
|
a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream
|
0.01% |
2.6
|
Shewanella
|
RISB1924 |
Anopheles gambiae
Order: Diptera
|
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
|
0.01% |
2.6
|
Bacteroides
|
RISB0256 |
Leptocybe invasa
Order: Hymenoptera
|
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
|
0.02% |
2.3
|
Bacteroides
|
RISB0090 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.02% |
2.1
|
Proteus
|
RISB2315 |
Aedes aegypti
Order: Diptera
|
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
|
0.01% |
2.1
|
Bacteroides
|
RISB1183 |
Oryzaephilus surinamensis
Order: Coleoptera
|
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
|
0.02% |
2.1
|
Vibrio
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.52% |
1.8
|
Candidatus Nardonella
|
RISB2449 |
Euscepes postfasciatus
Order: Coleoptera
|
endosymbiont is involved in normal growth and development of the host weevil
|
0.02% |
1.5
|
Candidatus Nardonella
|
RISB1931 |
Lissorhoptrus oryzophilus
Order: Coleoptera
|
might be not playing critical roles in the reproduction of L. oryzophilus
|
0.02% |
1.5
|
Paraclostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.01% |
1.1
|
Proteus
|
RISB2460 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
0.01% |
1.0
|
Aeromonas
|
RISB2456 |
Bombyx mori
Order: Lepidoptera
|
able to utilize the CMcellulose and xylan
|
0.02% |
0.8
|
Candidatus Nardonella
|
RISB1668 |
Multiple species
Order: Coleoptera
|
Possibly tyrosine precursor provisioning
|
0.02% |
0.8
|
Mycobacterium
|
RISB1156 |
Nicrophorus concolor
Order: Coleoptera
|
produces Antimicrobial compounds
|
0.02% |
0.7
|
Aeromonas
|
RISB2086 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.02% |
0.6
|
Priestia
|
RISB0839 |
Helicoverpa armigera
Order: Lepidoptera
|
producing amylase
|
0.01% |
0.4
|
Sphingobium
|
RISB1880 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.03% |
0.3
|
Neisseria
|
RISB0512 |
Plutella xylostella
Order: Lepidoptera
|
None
|
0.01% |
0.0
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.