SRR28387219 - simuliidae
Basic Information
Run: SRR28387219
Assay Type: WGS
Bioproject: PRJNA1088476
Biosample: SAMN40472408
Bytes: 1231739297
Center Name: KU LEUVEN
Sequencing Information
Instrument: Illumina NovaSeq 6000
Library Layout: PAIRED
Library Selection: RANDOM PCR
Platform: ILLUMINA
Geographic Information
Country: Cameroon
Continent: Africa
Location Name: Cameroon
Latitude/Longitude: 4.347925 N 11.635309 E
Sample Information
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1227 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
3.34% |
21.0
|
Enterobacter sp. T2
Species-level Match
Host Order Match
|
RISB0893 |
Bactrocera dorsalis
Order: Diptera
|
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
|
0.62% |
20.6
|
Enterobacter sp. JH25
Species-level Match
Host Order Match
|
RISB0893 |
Bactrocera dorsalis
Order: Diptera
|
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
|
0.45% |
20.5
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1141 |
Hermetia illucens
Order: Diptera
|
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
|
3.34% |
20.1
|
Klebsiella oxytoca
Species-level Match
Host Order Match
|
RISB0130 |
Ceratitis capitata
Order: Diptera
|
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
|
0.08% |
20.1
|
Enterobacter sp. 638
Species-level Match
Host Order Match
|
RISB0893 |
Bactrocera dorsalis
Order: Diptera
|
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
|
0.06% |
20.1
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1401 |
Delia antiqua
Order: Diptera
|
suppressed Beauveria bassiana conidia germination and hyphal growth
|
3.34% |
19.7
|
Lactiplantibacillus plantarum
Species-level Match
Host Order Match
|
RISB0674 |
Drosophila melanogaster
Order: Diptera
|
could effectively inhibit fungal spore germinations
|
3.59% |
19.6
|
Klebsiella michiganensis
Species-level Match
Host Order Match
|
RISB1052 |
Bactrocera dorsalis
Order: Diptera
|
K. michiganensis BD177 has the strain-specific ability to provide three essential amino acids (phenylalanine, tryptophan and methionine) and two vitamins B (folate and riboflavin) to B. dorsalis
|
0.04% |
18.9
|
Serratia marcescens
Species-level Match
Host Order Match
|
RISB1291 |
Aedes aegypti
Order: Diptera
|
facilitates arboviral infection through a secreted protein named SmEnhancin, which digests membrane-bound mucins on the mosquito gut epithelia, thereby enhancing viral dissemination.
|
0.07% |
18.7
|
Asaia
Host Order Match
|
RISB0854 |
Anopheles stephensi
Order: Diptera
|
Two complete operons encoding cytochrome bo3-type ubiquinol terminal oxidases (cyoABCD-1 and cyoABCD-2) were found in most Asaia genomes, possibly offering alternative terminal oxidases and allowing the flexible transition of respiratory pathways. Genes involved in the production of 2,3-butandiol and inositol have been found in Asaia sp. W12, possibly contributing to biofilm formation and stress tolerance.
|
3.66% |
18.7
|
Lactiplantibacillus plantarum
Species-level Match
Host Order Match
|
RISB0608 |
Drosophila melanogaster
Order: Diptera
|
None
|
3.59% |
18.6
|
Citrobacter sp. RHB25-C09
Species-level Match
Host Order Match
|
RISB1503 |
Bactrocera dorsalis
Order: Diptera
|
Pesticide-degrading bacteria were frequently detected from pesticide-resistant insects. Susceptible insects became resistant after inoculation of the pesticide-degrading symbiont
|
0.01% |
18.6
|
Bacillus cereus
Species-level Match
Host Order Match
|
RISB1872 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
3.21% |
18.5
|
Citrobacter amalonaticus
Species-level Match
Host Order Match
|
RISB0192 |
Hermetia illucens
Order: Diptera
|
can directly promote the expression of two gene families related to intestinal protein metabolism: Hitryp serine protease trypsin family and Himtp metallopeptidase family
|
0.02% |
18.4
|
Klebsiella oxytoca
Species-level Match
Host Order Match
|
RISB1139 |
Musca domestica
Order: Diptera
|
It is associated to newly laid housefly eggs, where it is deposited by the female, and has a role in oviposition as well as protection against potential pathogens
|
0.08% |
18.3
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB0772 |
Delia antiqua
Order: Diptera
|
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.03% |
18.3
|
Bacillus cereus
Species-level Match
Host Order Match
|
RISB1701 |
Phlebotomus papatasi
Order: Diptera
|
None
|
3.21% |
18.2
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB0008 |
Phormia regina
Order: Diptera
|
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
0.03% |
18.0
|
Acinetobacter sp. ESL0695
Species-level Match
Host Order Match
|
RISB2083 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
2.38% |
17.9
|
Citrobacter freundii
Species-level Match
Host Order Match
|
RISB1221 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.10% |
17.8
|
Serratia marcescens
Species-level Match
Host Order Match
|
RISB0009 |
Phormia regina
Order: Diptera
|
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
0.07% |
17.8
|
Serratia sp. JSRIV002
Species-level Match
Host Order Match
|
RISB1516 |
Anopheles stephensi
Order: Diptera
|
produce lipodepsipeptides, stephensiolides A-K, that have antibiotic activity and facilitate bacterial surface motility.
|
0.22% |
17.6
|
Asaia
Host Order Match
|
RISB0014 |
Aedes aegypti
Order: Diptera
|
The bacterium Asaia is considered a highly promising candidate for arboviral control in Aedes mosquitoes.Asaia could play a role in inhibiting CHIKV within Ae. aegypti.
|
3.66% |
17.0
|
Pantoea dispersa
Species-level Match
Host Order Match
|
RISB1413 |
Bactrocera dorsalis
Order: Diptera
|
causing female Bactrocera dorsalis laid more eggs but had shorter lifespan
|
0.50% |
17.0
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB1769 |
Calliphoridae
Order: Diptera
|
None
|
1.93% |
16.9
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB0611 |
Bactrocera dorsalis
Order: Diptera
|
may hydrolysing nitrogenous waste and providing metabolizable nitrogen for B. dorsalis
|
0.03% |
16.8
|
Asaia
Host Order Match
|
RISB2533 |
Anopheles stephensi
Order: Diptera
|
Asaia sp. strain effectively lodged in the female gut and salivary glands, sites that are crucial for Plasmodium sp. development and transmission
|
3.66% |
16.6
|
Acetobacter
Host Order Match
|
RISB1865 |
Drosophila melanogaster
Order: Diptera
|
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
|
1.45% |
16.5
|
Pantoea agglomerans
Species-level Match
|
RISB2197 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
6.28% |
16.3
|
Pantoea sp. MT58
Species-level Match
Host Order Match
|
RISB1708 |
Phlebotomus papatasi
Order: Diptera
|
None
|
1.16% |
16.2
|
Zymobacter palmae
Species-level Match
|
RISB1324 |
Vespa mandarinia
Order: Hymenoptera
|
None
|
11.13% |
16.1
|
Acinetobacter sp. Marseille-Q1620
Species-level Match
Host Order Match
|
RISB2083 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.45% |
16.0
|
Acinetobacter sp. KCTC 92772
Species-level Match
Host Order Match
|
RISB2083 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.26% |
15.8
|
Bacillus thuringiensis
Species-level Match
Host Order Match
|
RISB0820 |
Simulium tani
Order: Diptera
|
show resistance to some antibiotics
|
0.01% |
15.7
|
Providencia alcalifaciens
Species-level Match
Host Order Match
|
RISB1168 |
Bactrocera dorsalis
Order: Diptera
|
Promote the growth of larvae
|
0.12% |
15.7
|
Microbacterium sp. H1-D42
Species-level Match
Host Order Match
|
RISB2095 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.09% |
15.7
|
Acetobacter
Host Order Match
|
RISB0961 |
Drosophila melanogaster
Order: Diptera
|
The exist of Acetobacter had a balancing effect on food ingestion when carbohydrate levels were high in the warmer months, stabilizing fitness components of flies across the year.
|
1.45% |
15.0
|
Erwinia aphidicola
Species-level Match
Host Order Match
|
RISB1705 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.02% |
15.0
|
Buchnera aphidicola
Species-level Match
Host Order Match
|
RISB0051 |
Episyrphus balteatus
Order: Diptera
|
None
|
0.02% |
15.0
|
Pectobacterium carotovorum
Species-level Match
Host Order Match
|
RISB1772 |
Muscidae
Order: Diptera
|
None
|
0.01% |
15.0
|
Acetobacter
Host Order Match
|
RISB0184 |
Drosophila melanogaster
Order: Diptera
|
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
|
1.45% |
13.7
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
3.71% |
13.5
|
Rhodococcus
Host Order Match
|
RISB0775 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.18% |
13.4
|
Staphylococcus
Host Order Match
|
RISB0427 |
Anopheles sinensis
Order: Diptera
|
be identified in each part of the hyperendemic area of this study has a potential role to interact with malaria parasites.
|
0.02% |
12.5
|
Gluconobacter
Host Order Match
|
RISB0016 |
Aedes aegypti
Order: Diptera
|
Gluconobacter might increase the susceptibility of Ae. aegypti to CHIKV infection.
|
0.58% |
12.2
|
Proteus
Host Order Match
|
RISB2315 |
Aedes aegypti
Order: Diptera
|
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
|
0.07% |
12.2
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB2224 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
3.71% |
12.1
|
Gluconobacter
Host Order Match
|
RISB1882 |
Drosophila suzukii
Order: Diptera
|
produce volatile substances that attract female D. suzukii
|
0.58% |
11.7
|
Dysgonomonas
Host Order Match
|
RISB1235 |
Hermetia illucens
Order: Diptera
|
provides the tools for degrading of a broad range of substrates
|
0.01% |
11.3
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
1.93% |
11.3
|
Komagataeibacter
Host Order Match
|
RISB1883 |
Drosophila suzukii
Order: Diptera
|
produce volatile substances that attract female D. suzukii
|
0.03% |
11.2
|
Raoultella
Host Order Match
|
RISB1575 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
0.10% |
10.8
|
Cedecea
Host Order Match
|
RISB1570 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
0.02% |
10.7
|
Gluconobacter
Host Order Match
|
RISB0876 |
Drosophila suzukii
Order: Diptera
|
None
|
0.58% |
10.6
|
Aeromonas
Host Order Match
|
RISB2086 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.02% |
10.6
|
Sphingobium
Host Order Match
|
RISB1880 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.05% |
10.3
|
Peribacillus
Host Order Match
|
RISB1877 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.03% |
10.3
|
Staphylococcus
Host Order Match
|
RISB1881 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.02% |
10.3
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB0700 |
Nilaparvata lugens
Order: Hemiptera
|
Pseudomonas sp. composition and abundance correlated with BPH survivability
|
3.71% |
10.2
|
Proteus
Host Order Match
|
RISB0054 |
Episyrphus balteatus
Order: Diptera
|
None
|
0.07% |
10.1
|
Variovorax
Host Order Match
|
RISB1712 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.05% |
10.1
|
Burkholderia gladioli
Species-level Match
|
RISB1172 |
Lagria villosa
Order: Coleoptera
|
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
|
0.03% |
10.0
|
Buchnera aphidicola
Species-level Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
0.02% |
10.0
|
Buchnera aphidicola
Species-level Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
0.02% |
9.8
|
Escherichia coli
Species-level Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
1.93% |
9.7
|
Burkholderia gladioli
Species-level Match
|
RISB1729 |
Lagria hirta
Order: Coleoptera
|
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
|
0.03% |
9.3
|
Streptomyces sp. WAC00303
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.06% |
9.0
|
Streptomyces sp. NBC_00239
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.03% |
9.0
|
Streptomyces sp. T12
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.02% |
9.0
|
Burkholderia gladioli
Species-level Match
|
RISB1604 |
Lagria villosa
Order: Coleoptera
|
Bacteria produce icosalide, an unusual two-tailed lipocyclopeptide antibiotic,which is active against entomopathogenic bacteria, thus adding to the chemical armory protecting beetle offspring
|
0.03% |
8.9
|
Salmonella enterica
Species-level Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
3.71% |
8.7
|
Lactobacillus sp. ESL0785
Species-level Match
|
RISB0292 |
Lymantria dispar asiatica
Order: Lepidoptera
|
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
|
0.23% |
8.6
|
Candidatus Sodalis pierantonius
Species-level Match
|
RISB2035 |
Sitophilus oryzae
Order: Coleoptera
|
endosymbiont dynamics parallels numerous transcriptional changes in weevil developing adults and affects several biological processes, including metabolism and development
|
0.01% |
8.4
|
Candidatus Portiera aleyrodidarum
Species-level Match
|
RISB1193 |
Bemisia tabaci
Order: Hemiptera
|
synthesizing essential amino acid (e.g. tryptophan, leucine and L-Isoleucine), Bemisia tabaci provides vital nutritional support for growth, development and reproduction
|
0.02% |
8.4
|
Candidatus Portiera aleyrodidarum
Species-level Match
|
RISB2289 |
Bemisia tabaci
Order: Hemiptera
|
encoding the capability to synthetize, or participate in the synthesis of, several amino acids and carotenoids,
|
0.02% |
7.2
|
Candidatus Portiera aleyrodidarum
Species-level Match
|
RISB1973 |
Bemisia tabaci
Order: Hemiptera
|
a primary symbiont, which compensates for the deficient nutritional composition of its food sources
|
0.02% |
7.0
|
Candidatus Sodalis pierantonius
Species-level Match
|
RISB0972 |
Sitophilus oryzae
Order: Coleoptera
|
produce vitamins and essential amino acids required for insect development and cuticle biosynthesis
|
0.01% |
7.0
|
Leclercia adecarboxylata
Species-level Match
|
RISB1757 |
Spodoptera frugiperda
Order: Lepidoptera
|
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
|
0.11% |
6.9
|
Candidatus Sodalis pierantonius
Species-level Match
|
RISB0251 |
Sitophilus oryzae
Order: Coleoptera
|
may infulence immunity, metabolism, metal control, apoptosis, and bacterial stress response
|
0.01% |
6.8
|
Sphingomonas sp. CL5.1
Species-level Match
|
RISB0134 |
Spodoptera frugiperda
Order: Lepidoptera
|
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
|
0.19% |
6.8
|
Erwinia sp. QL-Z3
Species-level Match
|
RISB0808 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-12 oxidation pathway
|
0.07% |
6.5
|
Leclercia adecarboxylata
Species-level Match
|
RISB1758 |
Spodoptera frugiperda
Order: Lepidoptera
|
may influence the metabolization of pesticides in insects
|
0.11% |
6.3
|
Erwinia sp. QL-Z3
Species-level Match
|
RISB1986 |
Bombyx mori
Order: Lepidoptera
|
producing cellulase and amylase
|
0.07% |
5.7
|
Halomonas
|
RISB1808 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
3.78% |
5.1
|
Candidatus Kirkpatrickella diaphorinae
Species-level Match
|
RISB0222 |
Diaphorina citri
Order: Hemiptera
|
None
|
0.05% |
5.1
|
Staphylococcus
|
RISB0945 |
Callosobruchus maculatus
Order: Coleoptera
|
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
|
0.02% |
5.0
|
Candidatus Palibaumannia cicadellinicola
Species-level Match
|
RISB1594 |
Graphocephala coccinea
Order: Hemiptera
|
None
|
0.01% |
5.0
|
Rahnella
|
RISB1623 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.16% |
5.0
|
Clostridium
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.03% |
4.3
|
Sphingobium
|
RISB1837 |
Dendroctonus valens
Order: Coleoptera
|
It can trongly degrade naringenin, and pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and facilitate naringenin biodegradation by the microbiotas.
|
0.05% |
4.1
|
Halomonas
|
RISB1374 |
Bemisia tabaci
Order: Hemiptera
|
None
|
3.78% |
3.8
|
Yersinia
|
RISB0492 |
Cimex hemipterus
Order: Hemiptera
|
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
|
1.05% |
3.5
|
Raoultella
|
RISB2226 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.10% |
3.4
|
Yokenella
|
RISB1492 |
Nezara viridula
Order: Hemiptera
|
help stinkbugs to feed on soybean developing seeds in spite of its chemical defenses by degrading isoflavonoids and deactivate soybean protease inhibitors
|
0.12% |
3.2
|
Proteus
|
RISB0001 |
Leptinotarsa decemlineata
Order: Coleoptera
|
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
|
0.07% |
2.8
|
Vibrio
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
1.29% |
2.6
|
Nocardia
|
RISB0947 |
Acromyrmex
Order: Hymenoptera
|
Pseudonocardia in the Acromyrmex leaf-cutter ants as a protective partner against the entomopathogenic fungus Metarhizium
|
0.01% |
2.4
|
Rahnella
|
RISB1800 |
Dendroctonus valens
Order: Coleoptera
|
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth
|
0.16% |
2.3
|
Rahnella
|
RISB0741 |
Dendroctonus ponderosae
Order: Coleoptera
|
R. aquatilis decreased (−)-α-pinene (38%) and (+)-α-pinene (46%) by 40% and 45% (by GC-MS), respectively
|
0.16% |
2.2
|
Rhodococcus
|
RISB0430 |
Rhodnius prolixus
Order: Hemiptera
|
Rhodnius prolixus harbouring R. rhodnii developed faster, had higher survival, and laid more eggs
|
0.18% |
2.1
|
Nocardia
|
RISB1218 |
Mycocepurus smithii
Order: Hymenoptera
|
produce secondary metabolites with antibiotic activity that protects the fungus garden against pathogens
|
0.01% |
2.1
|
Rhizobium
|
RISB0135 |
Coccinella septempunctata
Order: Coleoptera
|
be commonly found in plant roots and they all have nitrogen fixation abilities
|
0.42% |
2.0
|
Leuconostoc
|
RISB0812 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-18 oxidation pathway
|
0.29% |
1.7
|
Bradyrhizobium
|
RISB0135 |
Coccinella septempunctata
Order: Coleoptera
|
be commonly found in plant roots and they all have nitrogen fixation abilities
|
0.05% |
1.6
|
Kosakonia
|
RISB0810 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-16 oxidation pathway
|
0.04% |
1.5
|
Raoultella
|
RISB1672 |
Spodoptera frugiperda
Order: Lepidoptera
|
downregulated POX but upregulated trypsin PI in this plant species
|
0.10% |
1.4
|
Massilia
|
RISB2151 |
Osmia bicornis
Order: Hymenoptera
|
may be essential to support Osmia larvae in their nutrient uptake
|
0.07% |
1.4
|
Variovorax
|
RISB2153 |
Osmia bicornis
Order: Hymenoptera
|
may be essential to support Osmia larvae in their nutrient uptake
|
0.05% |
1.4
|
Rhodococcus
|
RISB1087 |
Rhodnius prolixus
Order: Hemiptera
|
supply enzymatic biosynthesis of B-complex vitamins
|
0.18% |
1.2
|
Lysinibacillus
|
RISB1416 |
Psammotermes hypostoma
Order: Blattodea
|
isolates showed significant cellulolytic activity
|
0.13% |
1.1
|
Clostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.03% |
1.1
|
Neokomagataea
|
RISB1560 |
Oecophylla smaragdina
Order: Hymenoptera
|
may be related with the formic acid production
|
0.15% |
1.1
|
Dickeya
|
RISB1086 |
Rhodnius prolixus
Order: Hemiptera
|
supply enzymatic biosynthesis of B-complex vitamins
|
0.04% |
1.1
|
Yersinia
|
RISB0407 |
Anaphes nitens
Order: Hymenoptera
|
None
|
1.05% |
1.1
|
Cronobacter
|
RISB0247 |
Tenebrio molitor
Order: Coleoptera
|
may be indirectly involved in the digestion of PE
|
0.02% |
1.0
|
Aeromonas
|
RISB2456 |
Bombyx mori
Order: Lepidoptera
|
able to utilize the CMcellulose and xylan
|
0.02% |
0.8
|
Kosakonia
|
RISB1155 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.04% |
0.4
|
Aeromonas
|
RISB1145 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.02% |
0.4
|
Lysinibacillus
|
RISB1066 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.13% |
0.4
|
Priestia
|
RISB0839 |
Helicoverpa armigera
Order: Lepidoptera
|
producing amylase
|
0.01% |
0.4
|
Micromonospora
|
RISB2033 |
Palomena viridissima
Order: Hemiptera
|
None
|
0.35% |
0.4
|
Cupriavidus
|
RISB0694 |
Alydus tomentosus
Order: Hemiptera
|
None
|
0.09% |
0.1
|
Clostridium
|
RISB1959 |
Pyrrhocoridae
Order: Hemiptera
|
None
|
0.03% |
0.0
|
Paraburkholderia
|
RISB0125 |
Physopelta gutta
Order: Hemiptera
|
None
|
0.03% |
0.0
|
Cedecea
|
RISB0504 |
Plutella xylostella
Order: Lepidoptera
|
None
|
0.02% |
0.0
|
Flavobacterium
|
RISB0659 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.02% |
0.0
|
Dysgonomonas
|
RISB1481 |
Brachinus elongatulus
Order: Coleoptera
|
None
|
0.01% |
0.0
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.