SRR28387202 - simuliidae

Basic Information

Run: SRR28387202

Assay Type: WGS

Bioproject: PRJNA1088476

Biosample: SAMN40472424

Bytes: 742231617

Center Name: KU LEUVEN

Sequencing Information

Instrument: Illumina NovaSeq 6000

Library Layout: PAIRED

Library Selection: RANDOM PCR

Platform: ILLUMINA

Geographic Information

Country: Cameroon

Continent: Africa

Location Name: Cameroon

Latitude/Longitude: 4.347925 N 11.635309 E

Sample Information

Host: simuliidae

Isolation: -

Biosample Model: Metagenome or environmental

Collection Date: 2021-07

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Pantoea agglomerans
RISB2197
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
38.11%
48.1
Pantoea agglomerans
RISB2579
Schistocerca gregaria
Order: Orthoptera
produces an antifungal and antibacterial molecule serving as antimicrobial defense against gut pathogens
38.11%
45.2
Pantoea agglomerans
RISB0379
Frankliniella occidentalis
Order: Thysanoptera
gut symbionts are required for their development
38.11%
44.1
Enterobacter sp. T2
RISB0893
Bactrocera dorsalis
Order: Diptera
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
0.39%
20.4
Enterobacter sp. DSM 30060
RISB0893
Bactrocera dorsalis
Order: Diptera
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
0.05%
20.1
Klebsiella oxytoca
RISB0130
Ceratitis capitata
Order: Diptera
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The  colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
0.01%
20.0
Enterobacter sp. T2
RISB1338
Ceratitis capitata
Order: Diptera
Enterobacter sp. AA26 dry biomass can fully replace the brewer’s yeast as a protein source in medfly larval diet without any effect on the productivity and the biological quality of reared medfly of VIENNA 8 GSS
0.39%
19.6
Stenotrophomonas maltophilia
RISB1227
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
1.55%
19.3
Klebsiella michiganensis
RISB1052
Bactrocera dorsalis
Order: Diptera
K. michiganensis BD177 has the strain-specific ability to provide three essential amino acids (phenylalanine, tryptophan and methionine) and two vitamins B (folate and riboflavin) to B. dorsalis
0.01%
18.9
Serratia marcescens
RISB1291
Aedes aegypti
Order: Diptera
facilitates arboviral infection through a secreted protein named SmEnhancin, which digests membrane-bound mucins on the mosquito gut epithelia, thereby enhancing viral dissemination.
0.05%
18.7
Citrobacter sp. BDA59-3
RISB1503
Bactrocera dorsalis
Order: Diptera
Pesticide-degrading bacteria were frequently detected from pesticide-resistant insects. Susceptible insects became resistant after inoculation of the pesticide-degrading symbiont
0.06%
18.6
Stenotrophomonas maltophilia
RISB1141
Hermetia illucens
Order: Diptera
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
1.55%
18.4
Morganella morganii
RISB0772
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.05%
18.3
Klebsiella oxytoca
RISB1139
Musca domestica
Order: Diptera
It is associated to newly laid housefly eggs, where it is deposited by the female, and has a role in oviposition as well as protection against potential pathogens
0.01%
18.3
Citrobacter freundii
RISB1221
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.55%
18.3
Serratia sp. JSRIV002
RISB1516
Anopheles stephensi
Order: Diptera
produce lipodepsipeptides, stephensiolides A-K, that have antibiotic activity and facilitate bacterial surface motility.
0.76%
18.2
Morganella morganii
RISB0008
Phormia regina
Order: Diptera
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.05%
18.0
Stenotrophomonas maltophilia
RISB1401
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
1.55%
17.9
Serratia marcescens
RISB0009
Phormia regina
Order: Diptera
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.05%
17.7
Citrobacter freundii
RISB1396
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
0.55%
16.9
Bacillus cereus
RISB1872
Aedes aegypti
Order: Diptera
gut microbiome
1.55%
16.8
Morganella morganii
RISB0611
Bactrocera dorsalis
Order: Diptera
may hydrolysing nitrogenous waste and providing metabolizable nitrogen for B. dorsalis
0.05%
16.8
Bacillus cereus
RISB1701
Phlebotomus papatasi
Order: Diptera
None
1.55%
16.6
Escherichia coli
RISB1769
Calliphoridae
Order: Diptera
None
1.23%
16.2
Raoultella sp. HC6
RISB1575
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.02%
15.7
Bacillus thuringiensis
RISB0820
Simulium tani
Order: Diptera
show resistance to some antibiotics
0.03%
15.7
Asaia
RISB0854
Anopheles stephensi
Order: Diptera
Two complete operons encoding cytochrome bo3-type ubiquinol terminal oxidases (cyoABCD-1 and cyoABCD-2) were found in most Asaia genomes, possibly offering alternative terminal oxidases and allowing the flexible transition of respiratory pathways. Genes involved in the production of 2,3-butandiol and inositol have been found in Asaia sp. W12, possibly contributing to biofilm formation and stress tolerance.
0.61%
15.6
Acinetobacter sp. WY4
RISB2083
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.03%
15.6
Acetobacter
RISB1865
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.47%
15.5
Staphylococcus hominis
RISB1881
Aedes aegypti
Order: Diptera
gut microbiome
0.02%
15.3
Erwinia aphidicola
RISB1705
Phlebotomus papatasi
Order: Diptera
None
0.14%
15.1
Pectobacterium carotovorum
RISB1772
Muscidae
Order: Diptera
None
0.01%
15.0
Zymobacter palmae
RISB1324
Vespa mandarinia
Order: Hymenoptera
None
9.75%
14.8
Acetobacter
RISB0961
Drosophila melanogaster
Order: Diptera
The exist of Acetobacter had a balancing effect on food ingestion when carbohydrate levels were high in the warmer months, stabilizing fitness components of flies across the year.
0.47%
14.1
Asaia
RISB0014
Aedes aegypti
Order: Diptera
The bacterium Asaia is considered a highly promising candidate for arboviral control in Aedes mosquitoes.Asaia could play a role in inhibiting CHIKV within Ae. aegypti.
0.61%
14.0
Asaia
RISB2533
Anopheles stephensi
Order: Diptera
Asaia sp. strain effectively lodged in the female gut and salivary glands, sites that are crucial for Plasmodium sp. development and transmission
0.61%
13.5
Paenibacillus
RISB0774
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.15%
13.4
Rhodococcus
RISB0775
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.14%
13.4
Acetobacter
RISB0184
Drosophila melanogaster
Order: Diptera
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
0.47%
12.8
Proteus
RISB2315
Aedes aegypti
Order: Diptera
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
0.14%
12.3
Gluconobacter
RISB0016
Aedes aegypti
Order: Diptera
Gluconobacter might increase the susceptibility of Ae. aegypti to CHIKV infection.
0.08%
11.7
Pseudomonas sp. CIP-10
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
1.81%
11.6
Gluconobacter
RISB1882
Drosophila suzukii
Order: Diptera
produce volatile substances that attract female D. suzukii
0.08%
11.2
Paenibacillus
RISB2098
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.15%
10.7
Aeromonas
RISB2086
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.05%
10.6
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
1.23%
10.6
Peribacillus
RISB1877
Aedes aegypti
Order: Diptera
gut microbiome
0.03%
10.3
Pseudomonas sp. CIP-10
RISB2224
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
1.81%
10.2
Proteus
RISB0054
Episyrphus balteatus
Order: Diptera
None
0.14%
10.1
Gluconobacter
RISB0876
Drosophila suzukii
Order: Diptera
None
0.08%
10.1
Burkholderia gladioli
RISB1172
Lagria villosa
Order: Coleoptera
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
0.04%
10.0
Brevundimonas
RISB1703
Phlebotomus papatasi
Order: Diptera
None
0.04%
10.0
Pseudomonas sp. IAC-BECa141
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.06%
9.9
Acinetobacter sp. WY4
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.03%
9.7
Burkholderia gladioli
RISB1729
Lagria hirta
Order: Coleoptera
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
0.04%
9.3
Streptomyces sp. M92
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.11%
9.1
Streptomyces sp. WAC00303
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.08%
9.0
Staphylococcus xylosus
RISB2497
Anticarsia gemmatalis
Order: Lepidoptera
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
0.05%
9.0
Streptomyces sp. NBC_01465
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.04%
9.0
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
1.23%
9.0
Burkholderia gladioli
RISB1604
Lagria villosa
Order: Coleoptera
Bacteria produce icosalide, an unusual two-tailed lipocyclopeptide antibiotic,which is active against entomopathogenic bacteria, thus adding to the chemical armory protecting beetle offspring
0.04%
8.9
Acinetobacter sp. WY4
RISB1978
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
0.03%
8.9
Candidatus Portiera aleyrodidarum
RISB1193
Bemisia tabaci
Order: Hemiptera
synthesizing essential amino acid (e.g. tryptophan, leucine and L-Isoleucine), Bemisia tabaci provides vital nutritional support for growth, development and reproduction
0.02%
8.4
Raoultella sp. HC6
RISB2226
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.02%
8.4
Enterococcus sp. 12C11_DIV0727
RISB1393
Spodoptera frugiperda
Order: Lepidoptera
microbe-mediated assaults by maize defenses on the fall armyworm on the insect digestive and immune system reduced growth and elevated mortality in these insects
0.05%
8.3
Enterococcus sp. 12C11_DIV0727
RISB1490
Nezara viridula
Order: Hemiptera
help stinkbugs to feed on soybean developing seeds in spite of its chemical defenses by degrading isoflavonoids and deactivate soybean protease inhibitors
0.05%
8.1
Candidatus Portiera aleyrodidarum
RISB2289
Bemisia tabaci
Order: Hemiptera
encoding the capability to synthetize, or participate in the synthesis of, several amino acids and carotenoids,
0.02%
7.2
Candidatus Portiera aleyrodidarum
RISB1973
Bemisia tabaci
Order: Hemiptera
a primary symbiont, which compensates for the deficient nutritional composition of its food sources
0.02%
7.0
Leclercia adecarboxylata
RISB1757
Spodoptera frugiperda
Order: Lepidoptera
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
0.11%
6.9
Staphylococcus xylosus
RISB2247
Anticarsia gemmatalis
Order: Lepidoptera
mitigation of the negative effects of proteinase inhibitors produced by the host plant
0.05%
6.8
Enterococcus sp. 12C11_DIV0727
RISB1541
Plutella xylostella
Order: Lepidoptera
enhanced resistance to the widely used insecticide, chlorpyrifos, in P. xylostella
0.05%
6.7
Erwinia sp. E602
RISB0808
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-12 oxidation pathway
0.17%
6.6
Kosakonia sp. CCTCC M2018092
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.02%
6.4
Kosakonia sp. ML.JS2a
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.01%
6.4
Leclercia adecarboxylata
RISB1758
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.11%
6.3
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
1.19%
6.2
Erwinia sp. E602
RISB1986
Bombyx mori
Order: Lepidoptera
producing cellulase and amylase
0.17%
5.8
Oecophyllibacter saccharovorans
RISB1194
Oecophylla smaragdina
Order: Hymenoptera
None
0.21%
5.2
Formicincola oecophyllae
RISB0578
Oecophylla smaragdina
Order: Hymenoptera
None
0.19%
5.2
Paenibacillus
RISB2195
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.15%
5.2
Candidatus Kirkpatrickella diaphorinae
RISB0222
Diaphorina citri
Order: Hemiptera
None
0.05%
5.1
Rahnella
RISB1623
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.01%
4.8
Yersinia
RISB0492
Cimex hemipterus
Order: Hemiptera
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
0.84%
3.3
Halomonas
RISB1808
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
1.85%
3.2
Proteus
RISB0001
Leptinotarsa decemlineata
Order: Coleoptera
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
0.14%
2.8
Pseudonocardia
RISB0947
Acromyrmex
Order: Hymenoptera
Pseudonocardia in the Acromyrmex leaf-cutter ants as a protective partner against the entomopathogenic fungus Metarhizium
0.03%
2.5
Rahnella
RISB1800
Dendroctonus valens
Order: Coleoptera
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth
0.01%
2.2
Pseudonocardia
RISB1218
Mycocepurus smithii
Order: Hymenoptera
produce secondary metabolites with antibiotic activity that protects the fungus garden against pathogens
0.03%
2.1
Leuconostoc
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.69%
2.1
Rahnella
RISB0741
Dendroctonus ponderosae
Order: Coleoptera
R. aquatilis decreased (−)-α-pinene (38%) and (+)-α-pinene (46%) by 40% and 45% (by GC-MS), respectively
0.01%
2.1
Rhodococcus
RISB0430
Rhodnius prolixus
Order: Hemiptera
Rhodnius prolixus harbouring R. rhodnii developed faster, had higher survival, and laid more eggs
0.14%
2.1
Halomonas
RISB1374
Bemisia tabaci
Order: Hemiptera
None
1.85%
1.9
Rhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
0.07%
1.6
Agrobacterium
RISB0710
Fragariocoptes setiger
Order: Trombidiformes
it appears to form a biologically important association with the mite
0.16%
1.5
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.04%
1.4
Massilia
RISB2151
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.03%
1.3
Rhodococcus
RISB1087
Rhodnius prolixus
Order: Hemiptera
supply enzymatic biosynthesis of B-complex vitamins
0.14%
1.2
Dickeya
RISB1086
Rhodnius prolixus
Order: Hemiptera
supply enzymatic biosynthesis of B-complex vitamins
0.03%
1.1
Cronobacter
RISB0247
Tenebrio molitor
Order: Coleoptera
may be indirectly involved in the digestion of PE
0.04%
1.0
Micromonospora
RISB2033
Palomena viridissima
Order: Hemiptera
None
1.00%
1.0
Neokomagataea
RISB1560
Oecophylla smaragdina
Order: Hymenoptera
may be related with the formic acid production
0.01%
0.9
Aeromonas
RISB2456
Bombyx mori
Order: Lepidoptera
able to utilize the CMcellulose and xylan
0.05%
0.9
Yersinia
RISB0407
Anaphes nitens
Order: Hymenoptera
None
0.84%
0.8
Aeromonas
RISB1145
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.05%
0.4
Cupriavidus
RISB0694
Alydus tomentosus
Order: Hemiptera
None
0.31%
0.3
Kluyvera
RISB1064
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.02%
0.2
Flavobacterium
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
0.22%
0.2
Agrobacterium
RISB0650
Melanaphis bambusae
Order: Hemiptera
None
0.16%
0.2
Paraburkholderia
RISB0125
Physopelta gutta
Order: Hemiptera
None
0.08%
0.1

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR28387202
707.8 MB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table