SRR28387199 - simuliidae

Basic Information

Run: SRR28387199

Assay Type: WGS

Bioproject: PRJNA1088476

Biosample: SAMN40472426

Bytes: 1229252877

Center Name: KU LEUVEN

Sequencing Information

Instrument: Illumina NovaSeq 6000

Library Layout: PAIRED

Library Selection: RANDOM PCR

Platform: ILLUMINA

Geographic Information

Country: Cameroon

Continent: Africa

Location Name: Cameroon

Latitude/Longitude: 4.347925 N 11.635309 E

Sample Information

Host: simuliidae

Isolation: -

Biosample Model: Metagenome or environmental

Collection Date: 2021-07

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Lactiplantibacillus plantarum
RISB0674
Drosophila melanogaster
Order: Diptera
could effectively inhibit fungal spore germinations
26.02%
42.0
Lactiplantibacillus plantarum
RISB0608
Drosophila melanogaster
Order: Diptera
None
26.02%
41.0
Stenotrophomonas maltophilia
RISB1227
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
8.51%
26.2
Stenotrophomonas maltophilia
RISB1141
Hermetia illucens
Order: Diptera
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
8.51%
25.3
Stenotrophomonas maltophilia
RISB1401
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
8.51%
24.9
Enterobacter sp. T2
RISB0893
Bactrocera dorsalis
Order: Diptera
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
4.41%
24.4
Enterobacter sp. T2
RISB1338
Ceratitis capitata
Order: Diptera
Enterobacter sp. AA26 dry biomass can fully replace the brewer’s yeast as a protein source in medfly larval diet without any effect on the productivity and the biological quality of reared medfly of VIENNA 8 GSS
4.41%
23.6
Bacillus cereus
RISB1872
Aedes aegypti
Order: Diptera
gut microbiome
7.72%
23.0
Bacillus cereus
RISB1701
Phlebotomus papatasi
Order: Diptera
None
7.72%
22.7
Enterobacter sp. T2
RISB1311
Ceratitis capitata
Order: Diptera
it was shown to have positive effects in rearing efficiency when used as larval probiotics
4.41%
21.2
Klebsiella oxytoca
RISB0130
Ceratitis capitata
Order: Diptera
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The  colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
0.05%
20.1
Pseudomonas sp. CIP-10
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
8.85%
18.7
Paenibacillus sp. 481
RISB0774
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.10%
18.4
Klebsiella oxytoca
RISB1139
Musca domestica
Order: Diptera
It is associated to newly laid housefly eggs, where it is deposited by the female, and has a role in oviposition as well as protection against potential pathogens
0.05%
18.3
Bacillus cereus
RISB2161
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
7.72%
17.7
Enterococcus faecalis
RISB1411
Bactrocera dorsalis
Order: Diptera
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
0.06%
17.6
Klebsiella oxytoca
RISB1412
Bactrocera dorsalis
Order: Diptera
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
0.05%
17.6
Pseudomonas sp. CIP-10
RISB2224
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
8.85%
17.2
Enterococcus faecalis
RISB0095
Bactrocera minax
Order: Diptera
egrade phenols in unripe citrus in B. minax larvae
0.06%
16.1
Acinetobacter sp. WY4
RISB2083
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.12%
15.7
Asaia
RISB0854
Anopheles stephensi
Order: Diptera
Two complete operons encoding cytochrome bo3-type ubiquinol terminal oxidases (cyoABCD-1 and cyoABCD-2) were found in most Asaia genomes, possibly offering alternative terminal oxidases and allowing the flexible transition of respiratory pathways. Genes involved in the production of 2,3-butandiol and inositol have been found in Asaia sp. W12, possibly contributing to biofilm formation and stress tolerance.
0.67%
15.7
Paenibacillus sp. 481
RISB2098
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.10%
15.7
Escherichia coli
RISB1769
Calliphoridae
Order: Diptera
None
0.65%
15.7
Acinetobacter sp. ESL0695
RISB2083
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.05%
15.6
Pseudomonas sp. CIP-10
RISB0700
Nilaparvata lugens
Order: Hemiptera
Pseudomonas sp. composition and abundance correlated with BPH survivability
8.85%
15.4
Buchnera aphidicola
RISB0051
Episyrphus balteatus
Order: Diptera
None
0.07%
15.1
Proteus
RISB2315
Aedes aegypti
Order: Diptera
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
2.31%
14.4
Asaia
RISB0014
Aedes aegypti
Order: Diptera
The bacterium Asaia is considered a highly promising candidate for arboviral control in Aedes mosquitoes.Asaia could play a role in inhibiting CHIKV within Ae. aegypti.
0.67%
14.0
Serratia
RISB1291
Aedes aegypti
Order: Diptera
facilitates arboviral infection through a secreted protein named SmEnhancin, which digests membrane-bound mucins on the mosquito gut epithelia, thereby enhancing viral dissemination.
0.07%
13.7
Asaia
RISB2533
Anopheles stephensi
Order: Diptera
Asaia sp. strain effectively lodged in the female gut and salivary glands, sites that are crucial for Plasmodium sp. development and transmission
0.67%
13.6
Serratia
RISB1225
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.07%
12.8
Serratia
RISB0009
Phormia regina
Order: Diptera
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.07%
12.8
Shewanella
RISB1924
Anopheles gambiae
Order: Diptera
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
0.13%
12.7
Pantoea
RISB0424
Anopheles sinensis
Order: Diptera
be identified in each part of the hyperendemic area of this study has a potential role to interact with malaria parasites.
0.06%
12.5
Proteus
RISB0054
Episyrphus balteatus
Order: Diptera
None
2.31%
12.3
Pantoea
RISB2602
Rhagoletis pomonella
Order: Diptera
attract the apple maggot fly, Rhagoletis pomonella, to oviposition sites on host fruit
0.06%
11.8
Pantoea
RISB1413
Bactrocera dorsalis
Order: Diptera
causing female Bactrocera dorsalis laid more eggs but had shorter lifespan
0.06%
11.5
Peribacillus
RISB1877
Aedes aegypti
Order: Diptera
gut microbiome
0.58%
10.9
Aeromonas
RISB2086
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.08%
10.6
Burkholderia gladioli
RISB1172
Lagria villosa
Order: Coleoptera
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
0.44%
10.4
Alcaligenes
RISB1871
Aedes aegypti
Order: Diptera
gut microbiome
0.05%
10.3
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
0.07%
10.1
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
0.65%
10.0
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
0.07%
9.8
Acinetobacter sp. WY4
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.12%
9.8
Burkholderia gladioli
RISB1729
Lagria hirta
Order: Coleoptera
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
0.44%
9.7
Streptomyces sp. WAC00303
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.46%
9.4
Burkholderia gladioli
RISB1604
Lagria villosa
Order: Coleoptera
Bacteria produce icosalide, an unusual two-tailed lipocyclopeptide antibiotic,which is active against entomopathogenic bacteria, thus adding to the chemical armory protecting beetle offspring
0.44%
9.3
Streptomyces sp. WAC00303
RISB2334
Sirex noctilio
Order: Hymenoptera
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
0.46%
9.2
Streptomyces sp. GQFP
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.19%
9.2
Weissella cibaria
RISB1982
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
0.11%
8.9
Sphingobacterium sp. CZ-2
RISB2227
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.09%
8.4
Lactobacillus sp. CBA3605
RISB0292
Lymantria dispar asiatica
Order: Lepidoptera
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
0.05%
8.4
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.65%
8.4
Blattabacterium cuenoti
RISB0133
Panesthiinae
Order: Blattodea
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
0.05%
8.0
Weissella cibaria
RISB0641
Formica
Order: Hymenoptera
exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew
0.11%
7.9
Enterococcus faecalis
RISB0497
Cryptolestes ferrugineus
Order: Coleoptera
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
0.06%
7.6
Paenibacillus sp. 481
RISB0813
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-9 oxidation pathway
0.10%
6.5
Halomonas
RISB1808
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
4.88%
6.2
Blattabacterium cuenoti
RISB0518
Cryptocercus punctulatus
Order: Blattodea
collaborative arginine biosynthesis
0.05%
5.8
Blattabacterium cuenoti
RISB0093
Blattella germanica
Order: Blattodea
obligate endosymbiont
0.05%
5.5
Agrobacterium tumefaciens
RISB0650
Melanaphis bambusae
Order: Hemiptera
None
0.28%
5.3
Staphylococcus epidermidis
RISB1070
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.03%
5.3
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
0.10%
5.1
Lactobacillus apis
RISB1556
Apis florea
Order: Hymenoptera
None
0.06%
5.1
Flavobacterium johnsoniae
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
0.06%
5.1
Clostridium
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.80%
5.0
Proteus
RISB0001
Leptinotarsa decemlineata
Order: Coleoptera
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
2.31%
5.0
Halomonas
RISB1374
Bemisia tabaci
Order: Hemiptera
None
4.88%
4.9
Amycolatopsis
RISB0483
Trachymyrmex smithi
Order: Hymenoptera
inhibited the growth of Pseudonocardia symbionts under laboratory conditions. The novel analog nocamycin V from the strain was identified as the antibacterial compound
0.15%
3.5
Amycolatopsis
RISB0199
Trachymyrmex
Order: Hymenoptera
produce antibiotic EC0-0501 that has strong activity against ant-associated Actinobacteria and may also play a role in bacterial competition in this niche
0.15%
3.2
Bacteroides
RISB0256
Leptocybe invasa
Order: Hymenoptera
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
0.06%
2.4
Bacteroides
RISB0090
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.06%
2.2
Bacteroides
RISB1183
Oryzaephilus surinamensis
Order: Coleoptera
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
0.06%
2.1
Corynebacterium
RISB0363
Pagiophloeus tsushimanus
Order: Coleoptera
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
0.28%
2.1
Rhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
0.48%
2.0
Corynebacterium
RISB0531
Helicoverpa armigera
Order: Lepidoptera
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
0.28%
1.9
Clostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.80%
1.9
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.49%
1.8
Massilia
RISB2151
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.05%
1.4
Corynebacterium
RISB2360
Bombyx mori
Order: Lepidoptera
producing lipase in a gut environment
0.28%
1.0
Aeromonas
RISB2456
Bombyx mori
Order: Lepidoptera
able to utilize the CMcellulose and xylan
0.08%
0.9
Clostridium
RISB1959
Pyrrhocoridae
Order: Hemiptera
None
0.80%
0.8
Mycobacterium
RISB1156
Nicrophorus concolor
Order: Coleoptera
produces Antimicrobial compounds
0.10%
0.7
Aeromonas
RISB1145
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.08%
0.4
Priestia
RISB0839
Helicoverpa armigera
Order: Lepidoptera
producing amylase
0.06%
0.4
Cupriavidus
RISB0694
Alydus tomentosus
Order: Hemiptera
None
0.08%
0.1
Helicobacter
RISB0662
Melanaphis bambusae
Order: Hemiptera
None
0.05%
0.1

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR28387199
1.1 GB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table