SRR28387192 - simuliidae
Basic Information
Run: SRR28387192
Assay Type: WGS
Bioproject: PRJNA1088476
Biosample: SAMN40472433
Bytes: 503138149
Center Name: KU LEUVEN
Sequencing Information
Instrument: Illumina NovaSeq 6000
Library Layout: PAIRED
Library Selection: RANDOM PCR
Platform: ILLUMINA
Quality Control Information
Filter Percentage: 0.1343
QC Average Length: 133
Retained Reads: 9854430
Geographic Information
Country: Cameroon
Continent: Africa
Location Name: Cameroon
Latitude/Longitude: 4.347925 N 11.635309 E
Sample Information
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
| Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
|---|---|---|---|---|---|
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1227 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
10.15% |
27.9
|
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1141 |
Hermetia illucens
Order: Diptera
|
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
|
10.15% |
27.0
|
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1401 |
Delia antiqua
Order: Diptera
|
suppressed Beauveria bassiana conidia germination and hyphal growth
|
10.15% |
26.5
|
|
Bacillus cereus
Species-level Match
Host Order Match
|
RISB1872 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
9.19% |
24.5
|
|
Bacillus cereus
Species-level Match
Host Order Match
|
RISB1701 |
Phlebotomus papatasi
Order: Diptera
|
None
|
9.19% |
24.2
|
|
Enterobacter sp. T2
Species-level Match
Host Order Match
|
RISB0893 |
Bactrocera dorsalis
Order: Diptera
|
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
|
2.51% |
22.5
|
|
Enterobacter sp. T2
Species-level Match
Host Order Match
|
RISB1338 |
Ceratitis capitata
Order: Diptera
|
Enterobacter sp. AA26 dry biomass can fully replace the brewer’s yeast as a protein source in medfly larval diet without any effect on the productivity and the biological quality of reared medfly of VIENNA 8 GSS
|
2.51% |
21.7
|
|
Klebsiella oxytoca
Species-level Match
Host Order Match
|
RISB0130 |
Ceratitis capitata
Order: Diptera
|
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
|
0.37% |
20.4
|
|
Enterobacter sp. T2
Species-level Match
Host Order Match
|
RISB1311 |
Ceratitis capitata
Order: Diptera
|
it was shown to have positive effects in rearing efficiency when used as larval probiotics
|
2.51% |
19.3
|
|
Bacillus cereus
Species-level Match
|
RISB2161 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
9.19% |
19.2
|
|
Paenibacillus sp. 481
Species-level Match
Host Order Match
|
RISB0774 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.50% |
18.8
|
|
Klebsiella oxytoca
Species-level Match
Host Order Match
|
RISB1139 |
Musca domestica
Order: Diptera
|
It is associated to newly laid housefly eggs, where it is deposited by the female, and has a role in oviposition as well as protection against potential pathogens
|
0.37% |
18.6
|
|
Klebsiella pneumoniae
Species-level Match
Host Order Match
|
RISB1771 |
Muscidae
Order: Diptera
|
None
|
3.13% |
18.1
|
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB1411 |
Bactrocera dorsalis
Order: Diptera
|
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
|
0.35% |
17.9
|
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
7.47% |
17.3
|
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB1769 |
Calliphoridae
Order: Diptera
|
None
|
1.90% |
16.9
|
|
Asaia
Host Order Match
|
RISB0854 |
Anopheles stephensi
Order: Diptera
|
Two complete operons encoding cytochrome bo3-type ubiquinol terminal oxidases (cyoABCD-1 and cyoABCD-2) were found in most Asaia genomes, possibly offering alternative terminal oxidases and allowing the flexible transition of respiratory pathways. Genes involved in the production of 2,3-butandiol and inositol have been found in Asaia sp. W12, possibly contributing to biofilm formation and stress tolerance.
|
1.88% |
16.9
|
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB0095 |
Bactrocera minax
Order: Diptera
|
egrade phenols in unripe citrus in B. minax larvae
|
0.35% |
16.4
|
|
Paenibacillus sp. 481
Species-level Match
Host Order Match
|
RISB2098 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.50% |
16.1
|
|
Acinetobacter sp. CS-2
Species-level Match
Host Order Match
|
RISB2083 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.27% |
15.8
|
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB2224 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
7.47% |
15.8
|
|
Acinetobacter sp. WY4
Species-level Match
Host Order Match
|
RISB2083 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.25% |
15.8
|
|
Buchnera aphidicola
Species-level Match
Host Order Match
|
RISB0051 |
Episyrphus balteatus
Order: Diptera
|
None
|
0.33% |
15.3
|
|
Asaia
Host Order Match
|
RISB0014 |
Aedes aegypti
Order: Diptera
|
The bacterium Asaia is considered a highly promising candidate for arboviral control in Aedes mosquitoes.Asaia could play a role in inhibiting CHIKV within Ae. aegypti.
|
1.88% |
15.2
|
|
Asaia
Host Order Match
|
RISB2533 |
Anopheles stephensi
Order: Diptera
|
Asaia sp. strain effectively lodged in the female gut and salivary glands, sites that are crucial for Plasmodium sp. development and transmission
|
1.88% |
14.8
|
|
Burkholderia gladioli
Species-level Match
|
RISB1172 |
Lagria villosa
Order: Coleoptera
|
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
|
4.48% |
14.5
|
|
Proteus
Host Order Match
|
RISB2315 |
Aedes aegypti
Order: Diptera
|
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
|
2.00% |
14.1
|
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB0700 |
Nilaparvata lugens
Order: Hemiptera
|
Pseudomonas sp. composition and abundance correlated with BPH survivability
|
7.47% |
14.0
|
|
Burkholderia gladioli
Species-level Match
|
RISB1729 |
Lagria hirta
Order: Coleoptera
|
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
|
4.48% |
13.8
|
|
Staphylococcus
Host Order Match
|
RISB0427 |
Anopheles sinensis
Order: Diptera
|
be identified in each part of the hyperendemic area of this study has a potential role to interact with malaria parasites.
|
1.02% |
13.5
|
|
Burkholderia gladioli
Species-level Match
|
RISB1604 |
Lagria villosa
Order: Coleoptera
|
Bacteria produce icosalide, an unusual two-tailed lipocyclopeptide antibiotic,which is active against entomopathogenic bacteria, thus adding to the chemical armory protecting beetle offspring
|
4.48% |
13.3
|
|
Shewanella
Host Order Match
|
RISB1924 |
Anopheles gambiae
Order: Diptera
|
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
|
0.39% |
12.9
|
|
Proteus
Host Order Match
|
RISB0054 |
Episyrphus balteatus
Order: Diptera
|
None
|
2.00% |
12.0
|
|
Staphylococcus
Host Order Match
|
RISB1881 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
1.02% |
11.3
|
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
1.90% |
11.2
|
|
Chryseobacterium
Host Order Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.41% |
11.0
|
|
Peribacillus
Host Order Match
|
RISB1877 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.62% |
10.9
|
|
Chryseobacterium
Host Order Match
|
RISB1874 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.41% |
10.7
|
|
Alcaligenes
Host Order Match
|
RISB1871 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.17% |
10.5
|
|
Chryseobacterium
Host Order Match
|
RISB0015 |
Aedes aegypti
Order: Diptera
|
None
|
0.41% |
10.4
|
|
Buchnera aphidicola
Species-level Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
0.33% |
10.3
|
|
Pantoea ananatis
Species-level Match
|
RISB1671 |
Spodoptera frugiperda
Order: Lepidoptera
|
modulate plant defense, downregulated the activity of the plant defensive proteins polyphenol oxidase and trypsin proteinase inhibitors (trypsin PI) but upregulated peroxidase (POX) activity in tomatoresponses
|
1.09% |
10.3
|
|
Enterococcus mundtii
Species-level Match
|
RISB1733 |
Spodoptera littoralis
Order: Lepidoptera
|
actively secretes a stable class IIa bacteriocin (mundticin KS) against invading bacteria, including the opportunistic pathogens E. faecalis and E. casseliflavus, but not against other gut residents, facilitating the normal development of host gut microbiota
|
0.12% |
10.1
|
|
Buchnera aphidicola
Species-level Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
0.33% |
10.1
|
|
Streptomyces sp. WAC00303
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
1.12% |
10.1
|
|
Streptomyces sp. GQFP
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
1.05% |
10.0
|
|
Acinetobacter sp. CS-2
Species-level Match
|
RISB0730 |
Curculio chinensis
Order: Coleoptera
|
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
|
0.27% |
10.0
|
|
Streptomyces sp. WAC00303
Species-level Match
|
RISB2334 |
Sirex noctilio
Order: Hymenoptera
|
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
|
1.12% |
9.8
|
|
Escherichia coli
Species-level Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
1.90% |
9.6
|
|
Mammaliicoccus sciuri
Species-level Match
|
RISB0075 |
Bombyx mori
Order: Lepidoptera
|
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
|
0.12% |
9.1
|
|
Blattabacterium cuenoti
Species-level Match
|
RISB0133 |
Panesthiinae
Order: Blattodea
|
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
|
0.25% |
8.2
|
|
Pantoea ananatis
Species-level Match
|
RISB0515 |
Laodelphax striatellus
Order: Hemiptera
|
pathogenic to the host insect, raises the possibility of using the Lstr strain as a biological agent
|
1.09% |
8.1
|
|
Paenibacillus sp. 481
Species-level Match
|
RISB0813 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-9 oxidation pathway
|
0.50% |
6.9
|
|
Staphylococcus
|
RISB0945 |
Callosobruchus maculatus
Order: Coleoptera
|
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
|
1.02% |
6.0
|
|
Blattabacterium cuenoti
Species-level Match
|
RISB0518 |
Cryptocercus punctulatus
Order: Blattodea
|
collaborative arginine biosynthesis
|
0.25% |
6.0
|
|
Salmonella enterica
Species-level Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
0.93% |
5.9
|
|
Halomonas
|
RISB1808 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
4.59% |
5.9
|
|
Blattabacterium cuenoti
Species-level Match
|
RISB0093 |
Blattella germanica
Order: Blattodea
|
obligate endosymbiont
|
0.25% |
5.7
|
|
Clostridium
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
1.36% |
5.6
|
|
Sphingobacterium multivorum
Species-level Match
|
RISB0671 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.41% |
5.4
|
|
Lactobacillus apis
Species-level Match
|
RISB1556 |
Apis florea
Order: Hymenoptera
|
None
|
0.38% |
5.4
|
|
Zymobacter palmae
Species-level Match
|
RISB1324 |
Vespa mandarinia
Order: Hymenoptera
|
None
|
0.37% |
5.4
|
|
Candidatus Erwinia haradaeae
Species-level Match
|
RISB1632 |
Lachninae
Order: Hemiptera
|
None
|
0.10% |
5.1
|
|
Proteus
|
RISB0001 |
Leptinotarsa decemlineata
Order: Coleoptera
|
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
|
2.00% |
4.7
|
|
Halomonas
|
RISB1374 |
Bemisia tabaci
Order: Hemiptera
|
None
|
4.59% |
4.6
|
|
Amycolatopsis
|
RISB0483 |
Trachymyrmex smithi
Order: Hymenoptera
|
inhibited the growth of Pseudonocardia symbionts under laboratory conditions. The novel analog nocamycin V from the strain was identified as the antibacterial compound
|
1.06% |
4.4
|
|
Vibrio
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
3.04% |
4.4
|
|
Amycolatopsis
|
RISB0199 |
Trachymyrmex
Order: Hymenoptera
|
produce antibiotic EC0-0501 that has strong activity against ant-associated Actinobacteria and may also play a role in bacterial competition in this niche
|
1.06% |
4.1
|
|
Flavobacterium
|
RISB0659 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
3.49% |
3.5
|
|
Rhizobium
|
RISB0135 |
Coccinella septempunctata
Order: Coleoptera
|
be commonly found in plant roots and they all have nitrogen fixation abilities
|
1.21% |
2.8
|
|
Bacteroides
|
RISB0256 |
Leptocybe invasa
Order: Hymenoptera
|
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
|
0.24% |
2.5
|
|
Corynebacterium
|
RISB0363 |
Pagiophloeus tsushimanus
Order: Coleoptera
|
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
|
0.73% |
2.5
|
|
Clostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
1.36% |
2.4
|
|
Corynebacterium
|
RISB0531 |
Helicoverpa armigera
Order: Lepidoptera
|
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
|
0.73% |
2.4
|
|
Bacteroides
|
RISB0090 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.24% |
2.4
|
|
Streptococcus
|
RISB2625 |
Galleria mellonella
Order: Lepidoptera
|
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
|
0.34% |
2.4
|
|
Bacteroides
|
RISB1183 |
Oryzaephilus surinamensis
Order: Coleoptera
|
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
|
0.24% |
2.3
|
|
Streptococcus
|
RISB2624 |
Reticulitermes flavipes
Order: Blattodea
|
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
|
0.34% |
2.0
|
|
Bradyrhizobium
|
RISB0135 |
Coccinella septempunctata
Order: Coleoptera
|
be commonly found in plant roots and they all have nitrogen fixation abilities
|
0.38% |
1.9
|
|
Nostoc
|
RISB0812 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-18 oxidation pathway
|
0.38% |
1.8
|
|
Streptococcus
|
RISB2604 |
Homona magnanima
Order: Lepidoptera
|
influence the growth of Bacillus thuringiensis in the larvae
|
0.34% |
1.5
|
|
Corynebacterium
|
RISB2360 |
Bombyx mori
Order: Lepidoptera
|
producing lipase in a gut environment
|
0.73% |
1.5
|
|
Diaphorobacter
|
RISB2150 |
Osmia bicornis
Order: Hymenoptera
|
may be essential to support Osmia larvae in their nutrient uptake
|
0.18% |
1.5
|
|
Clostridium
|
RISB1959 |
Pyrrhocoridae
Order: Hemiptera
|
None
|
1.36% |
1.4
|
|
Paraclostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.09% |
1.2
|
|
Mycobacterium
|
RISB1156 |
Nicrophorus concolor
Order: Coleoptera
|
produces Antimicrobial compounds
|
0.23% |
0.9
|
|
Priestia
|
RISB0839 |
Helicoverpa armigera
Order: Lepidoptera
|
producing amylase
|
0.34% |
0.7
|
|
Diaphorobacter
|
RISB1062 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.18% |
0.4
|
|
Helicobacter
|
RISB0662 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.25% |
0.3
|
|
Paraburkholderia
|
RISB0125 |
Physopelta gutta
Order: Hemiptera
|
None
|
0.16% |
0.2
|
|
Cupriavidus
|
RISB0694 |
Alydus tomentosus
Order: Hemiptera
|
None
|
0.12% |
0.1
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.