SRR28387189 - simuliidae

Basic Information

Run: SRR28387189

Assay Type: WGS

Bioproject: PRJNA1088476

Biosample: SAMN40472435

Bytes: 710975879

Center Name: KU LEUVEN

Sequencing Information

Instrument: Illumina NovaSeq 6000

Library Layout: PAIRED

Library Selection: RANDOM PCR

Platform: ILLUMINA

Geographic Information

Country: Cameroon

Continent: Africa

Location Name: Cameroon

Latitude/Longitude: 4.347925 N 11.635309 E

Sample Information

Host: simuliidae

Isolation: -

Biosample Model: Metagenome or environmental

Collection Date: 2021-07

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Enterobacter sp. T2
RISB0893
Bactrocera dorsalis
Order: Diptera
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
2.96%
23.0
Enterobacter sp. T2
RISB1338
Ceratitis capitata
Order: Diptera
Enterobacter sp. AA26 dry biomass can fully replace the brewer’s yeast as a protein source in medfly larval diet without any effect on the productivity and the biological quality of reared medfly of VIENNA 8 GSS
2.96%
22.2
Stenotrophomonas maltophilia
RISB1227
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
3.67%
21.4
Lactococcus lactis
RISB0131
Ceratitis capitata
Order: Diptera
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The  colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
0.77%
20.8
Stenotrophomonas maltophilia
RISB1141
Hermetia illucens
Order: Diptera
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
3.67%
20.5
Enterococcus faecalis
RISB1411
Bactrocera dorsalis
Order: Diptera
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
2.64%
20.2
Klebsiella oxytoca
RISB0130
Ceratitis capitata
Order: Diptera
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The  colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
0.08%
20.1
Stenotrophomonas maltophilia
RISB1401
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
3.67%
20.0
Pseudomonas aeruginosa
RISB0364
Pagiophloeus tsushimanus
Order: Coleoptera
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
12.98%
19.8
Enterobacter sp. T2
RISB1311
Ceratitis capitata
Order: Diptera
it was shown to have positive effects in rearing efficiency when used as larval probiotics
2.96%
19.8
Enterococcus casseliflavus
RISB0112
Bactrocera dorsalis
Order: Diptera
increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities
1.55%
19.6
Lactococcus lactis
RISB0113
Bactrocera dorsalis
Order: Diptera
increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities
0.77%
18.8
Enterococcus faecalis
RISB0095
Bactrocera minax
Order: Diptera
egrade phenols in unripe citrus in B. minax larvae
2.64%
18.6
Citrobacter sp. BDA59-3
RISB1503
Bactrocera dorsalis
Order: Diptera
Pesticide-degrading bacteria were frequently detected from pesticide-resistant insects. Susceptible insects became resistant after inoculation of the pesticide-degrading symbiont
0.03%
18.6
Arthrobacter sp. KBS0702
RISB0769
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.20%
18.5
Morganella morganii
RISB0772
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.06%
18.3
Klebsiella pneumoniae
RISB1771
Muscidae
Order: Diptera
None
3.32%
18.3
Bacillus cereus
RISB1872
Aedes aegypti
Order: Diptera
gut microbiome
2.83%
18.1
Morganella morganii
RISB0008
Phormia regina
Order: Diptera
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.06%
18.0
Bacillus cereus
RISB1701
Phlebotomus papatasi
Order: Diptera
None
2.83%
17.8
Citrobacter freundii
RISB1221
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.07%
17.8
Pseudomonas protegens
RISB1224
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.03%
17.7
Klebsiella oxytoca
RISB1412
Bactrocera dorsalis
Order: Diptera
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
0.08%
17.6
Escherichia coli
RISB1769
Calliphoridae
Order: Diptera
None
2.33%
17.3
Pantoea dispersa
RISB1413
Bactrocera dorsalis
Order: Diptera
causing female Bactrocera dorsalis laid more eggs but had shorter lifespan
0.52%
17.0
Pseudomonas sp. CIP-10
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
7.11%
16.9
Morganella morganii
RISB0611
Bactrocera dorsalis
Order: Diptera
may hydrolysing nitrogenous waste and providing metabolizable nitrogen for B. dorsalis
0.06%
16.8
Bacillus sp. FSL L8-0215
RISB0791
Anopheles barbirostris
Order: Diptera
without this midgut flora showed delayed development to become adult
0.35%
16.7
Lactiplantibacillus plantarum
RISB0674
Drosophila melanogaster
Order: Diptera
could effectively inhibit fungal spore germinations
0.41%
16.4
Citrobacter freundii
RISB1396
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
0.07%
16.4
Lactococcus lactis
RISB1167
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
0.77%
16.3
Pantoea sp. MT58
RISB1708
Phlebotomus papatasi
Order: Diptera
None
1.04%
16.0
Acinetobacter sp. WY4
RISB2083
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.11%
15.7
Acinetobacter sp. ESL0695
RISB2083
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.10%
15.7
Asaia
RISB0854
Anopheles stephensi
Order: Diptera
Two complete operons encoding cytochrome bo3-type ubiquinol terminal oxidases (cyoABCD-1 and cyoABCD-2) were found in most Asaia genomes, possibly offering alternative terminal oxidases and allowing the flexible transition of respiratory pathways. Genes involved in the production of 2,3-butandiol and inositol have been found in Asaia sp. W12, possibly contributing to biofilm formation and stress tolerance.
0.66%
15.7
Lactiplantibacillus plantarum
RISB0608
Drosophila melanogaster
Order: Diptera
None
0.41%
15.4
Acetobacter
RISB1865
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.23%
15.2
Pantoea sp. JZ2
RISB1708
Phlebotomus papatasi
Order: Diptera
None
0.10%
15.1
Buchnera aphidicola
RISB0051
Episyrphus balteatus
Order: Diptera
None
0.05%
15.1
Pectobacterium carotovorum
RISB1772
Muscidae
Order: Diptera
None
0.04%
15.0
Asaia
RISB0014
Aedes aegypti
Order: Diptera
The bacterium Asaia is considered a highly promising candidate for arboviral control in Aedes mosquitoes.Asaia could play a role in inhibiting CHIKV within Ae. aegypti.
0.66%
14.0
Acetobacter
RISB0961
Drosophila melanogaster
Order: Diptera
The exist of Acetobacter had a balancing effect on food ingestion when carbohydrate levels were high in the warmer months, stabilizing fitness components of flies across the year.
0.23%
13.8
Asaia
RISB2533
Anopheles stephensi
Order: Diptera
Asaia sp. strain effectively lodged in the female gut and salivary glands, sites that are crucial for Plasmodium sp. development and transmission
0.66%
13.6
Paenibacillus
RISB0774
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.17%
13.4
Staphylococcus
RISB0427
Anopheles sinensis
Order: Diptera
be identified in each part of the hyperendemic area of this study has a potential role to interact with malaria parasites.
0.29%
12.7
Acetobacter
RISB0184
Drosophila melanogaster
Order: Diptera
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
0.23%
12.5
Proteus
RISB2315
Aedes aegypti
Order: Diptera
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
0.24%
12.4
Gluconobacter
RISB0016
Aedes aegypti
Order: Diptera
Gluconobacter might increase the susceptibility of Ae. aegypti to CHIKV infection.
0.69%
12.3
Gluconobacter
RISB1882
Drosophila suzukii
Order: Diptera
produce volatile substances that attract female D. suzukii
0.69%
11.9
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
2.33%
11.7
Aeromonas
RISB2086
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.40%
11.0
Paenibacillus
RISB2098
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.17%
10.7
Gluconobacter
RISB0876
Drosophila suzukii
Order: Diptera
None
0.69%
10.7
Staphylococcus
RISB1881
Aedes aegypti
Order: Diptera
gut microbiome
0.29%
10.6
Burkholderia gladioli
RISB1172
Lagria villosa
Order: Coleoptera
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
0.39%
10.4
Peribacillus
RISB1877
Aedes aegypti
Order: Diptera
gut microbiome
0.05%
10.3
Alcaligenes
RISB1871
Aedes aegypti
Order: Diptera
gut microbiome
0.04%
10.3
Proteus
RISB0054
Episyrphus balteatus
Order: Diptera
None
0.24%
10.2
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
2.33%
10.1
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
0.05%
10.1
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
0.05%
9.8
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
4.80%
9.8
Acinetobacter sp. WY4
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.11%
9.8
Burkholderia gladioli
RISB1729
Lagria hirta
Order: Coleoptera
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
0.39%
9.7
Burkholderia gladioli
RISB1604
Lagria villosa
Order: Coleoptera
Bacteria produce icosalide, an unusual two-tailed lipocyclopeptide antibiotic,which is active against entomopathogenic bacteria, thus adding to the chemical armory protecting beetle offspring
0.39%
9.2
Streptomyces sp. WAC00303
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.16%
9.1
Weissella cibaria
RISB1982
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
0.26%
9.1
Streptomyces sp. T12
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.10%
9.1
Streptomyces sp. GQFP
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.06%
9.0
Weissella cibaria
RISB0641
Formica
Order: Hymenoptera
exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew
0.26%
8.0
Blattabacterium cuenoti
RISB0133
Panesthiinae
Order: Blattodea
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
0.03%
8.0
Kosakonia sp. CCTCC M2018092
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.93%
7.4
Kosakonia sp. SMBL-WEM22
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.12%
6.5
Zymobacter palmae
RISB1324
Vespa mandarinia
Order: Hymenoptera
None
0.91%
5.9
Blattabacterium cuenoti
RISB0518
Cryptocercus punctulatus
Order: Blattodea
collaborative arginine biosynthesis
0.03%
5.7
Blattabacterium cuenoti
RISB0093
Blattella germanica
Order: Blattodea
obligate endosymbiont
0.03%
5.5
Staphylococcus
RISB0945
Callosobruchus maculatus
Order: Coleoptera
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
0.29%
5.3
Novosphingobium
RISB1837
Dendroctonus valens
Order: Coleoptera
It can trongly degrade naringenin, and pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and facilitate naringenin biodegradation by the microbiotas.
1.19%
5.2
Paenibacillus
RISB2195
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.17%
5.2
Oecophyllibacter saccharovorans
RISB1194
Oecophylla smaragdina
Order: Hymenoptera
None
0.12%
5.1
Formicincola oecophyllae
RISB0578
Oecophylla smaragdina
Order: Hymenoptera
None
0.06%
5.1
Candidatus Kirkpatrickella diaphorinae
RISB0222
Diaphorina citri
Order: Hemiptera
None
0.05%
5.1
Lactobacillus apis
RISB1556
Apis florea
Order: Hymenoptera
None
0.04%
5.0
Clostridium
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.18%
4.4
Amycolatopsis
RISB0483
Trachymyrmex smithi
Order: Hymenoptera
inhibited the growth of Pseudonocardia symbionts under laboratory conditions. The novel analog nocamycin V from the strain was identified as the antibacterial compound
0.06%
3.4
Halomonas
RISB1808
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
1.96%
3.3
Amycolatopsis
RISB0199
Trachymyrmex
Order: Hymenoptera
produce antibiotic EC0-0501 that has strong activity against ant-associated Actinobacteria and may also play a role in bacterial competition in this niche
0.06%
3.1
Proteus
RISB0001
Leptinotarsa decemlineata
Order: Coleoptera
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
0.24%
2.9
Yersinia
RISB0492
Cimex hemipterus
Order: Hemiptera
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
0.45%
2.9
Halomonas
RISB1374
Bemisia tabaci
Order: Hemiptera
None
1.96%
2.0
Corynebacterium
RISB0363
Pagiophloeus tsushimanus
Order: Coleoptera
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
0.06%
1.8
Corynebacterium
RISB0531
Helicoverpa armigera
Order: Lepidoptera
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
0.06%
1.7
Bradyrhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
0.11%
1.7
Nostoc
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.11%
1.5
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.20%
1.5
Clostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.18%
1.2
Aeromonas
RISB2456
Bombyx mori
Order: Lepidoptera
able to utilize the CMcellulose and xylan
0.40%
1.2
Neokomagataea
RISB1560
Oecophylla smaragdina
Order: Hymenoptera
may be related with the formic acid production
0.04%
1.0
Flavobacterium
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
0.86%
0.9
Corynebacterium
RISB2360
Bombyx mori
Order: Lepidoptera
producing lipase in a gut environment
0.06%
0.8
Aeromonas
RISB1145
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.40%
0.8
Yersinia
RISB0407
Anaphes nitens
Order: Hymenoptera
None
0.45%
0.5
Priestia
RISB0839
Helicoverpa armigera
Order: Lepidoptera
producing amylase
0.03%
0.4
Clostridium
RISB1959
Pyrrhocoridae
Order: Hemiptera
None
0.18%
0.2
Cupriavidus
RISB0694
Alydus tomentosus
Order: Hemiptera
None
0.05%
0.1
Helicobacter
RISB0662
Melanaphis bambusae
Order: Hemiptera
None
0.03%
0.0

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR28387189
678.0 MB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table