SRR28387178 - simuliidae

Basic Information

Run: SRR28387178

Assay Type: WGS

Bioproject: PRJNA1088476

Biosample: SAMN40472445

Bytes: 798501263

Center Name: KU LEUVEN

Sequencing Information

Instrument: Illumina NovaSeq 6000

Library Layout: PAIRED

Library Selection: RANDOM PCR

Platform: ILLUMINA

Geographic Information

Country: Cameroon

Continent: Africa

Location Name: Cameroon

Latitude/Longitude: 4.347925 N 11.635309 E

Sample Information

Host: simuliidae

Isolation: -

Biosample Model: Metagenome or environmental

Collection Date: 2021-07

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Pantoea agglomerans
RISB2197
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
22.11%
32.1
Pantoea agglomerans
RISB2579
Schistocerca gregaria
Order: Orthoptera
produces an antifungal and antibacterial molecule serving as antimicrobial defense against gut pathogens
22.11%
29.2
Pantoea agglomerans
RISB0379
Frankliniella occidentalis
Order: Thysanoptera
gut symbionts are required for their development
22.11%
28.1
Stenotrophomonas maltophilia
RISB1227
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
3.46%
21.2
Enterobacter sp. T2
RISB0893
Bactrocera dorsalis
Order: Diptera
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
0.77%
20.8
Stenotrophomonas maltophilia
RISB1141
Hermetia illucens
Order: Diptera
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
3.46%
20.3
Klebsiella oxytoca
RISB0130
Ceratitis capitata
Order: Diptera
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The  colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
0.12%
20.1
Enterobacter sp. RHBSTW-00593
RISB0893
Bactrocera dorsalis
Order: Diptera
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
0.11%
20.1
Enterobacter sp. T2
RISB1338
Ceratitis capitata
Order: Diptera
Enterobacter sp. AA26 dry biomass can fully replace the brewer’s yeast as a protein source in medfly larval diet without any effect on the productivity and the biological quality of reared medfly of VIENNA 8 GSS
0.77%
20.0
Stenotrophomonas maltophilia
RISB1401
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
3.46%
19.8
Bacillus cereus
RISB1872
Aedes aegypti
Order: Diptera
gut microbiome
4.52%
19.8
Bacillus cereus
RISB1701
Phlebotomus papatasi
Order: Diptera
None
4.52%
19.5
Serratia marcescens
RISB1291
Aedes aegypti
Order: Diptera
facilitates arboviral infection through a secreted protein named SmEnhancin, which digests membrane-bound mucins on the mosquito gut epithelia, thereby enhancing viral dissemination.
0.29%
18.9
Klebsiella michiganensis
RISB1052
Bactrocera dorsalis
Order: Diptera
K. michiganensis BD177 has the strain-specific ability to provide three essential amino acids (phenylalanine, tryptophan and methionine) and two vitamins B (folate and riboflavin) to B. dorsalis
0.02%
18.9
Citrobacter sp. RHB25-C09
RISB1503
Bactrocera dorsalis
Order: Diptera
Pesticide-degrading bacteria were frequently detected from pesticide-resistant insects. Susceptible insects became resistant after inoculation of the pesticide-degrading symbiont
0.02%
18.6
Citrobacter amalonaticus
RISB0192
Hermetia illucens
Order: Diptera
can directly promote the expression of two gene families related to intestinal protein metabolism: Hitryp serine protease trypsin family and Himtp metallopeptidase family
0.02%
18.4
Klebsiella oxytoca
RISB1139
Musca domestica
Order: Diptera
It is associated to newly laid housefly eggs, where it is deposited by the female, and has a role in oviposition as well as protection against potential pathogens
0.12%
18.4
Paenibacillus sp. FSL W8-0426
RISB0774
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.05%
18.3
Morganella morganii
RISB0772
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.02%
18.3
Paenibacillus sp. RC67
RISB0774
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.02%
18.3
Citrobacter freundii
RISB1221
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.45%
18.2
Morganella morganii
RISB0008
Phormia regina
Order: Diptera
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.02%
18.0
Serratia marcescens
RISB0009
Phormia regina
Order: Diptera
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.29%
18.0
Serratia plymuthica
RISB1225
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.02%
17.7
Asaia
RISB0854
Anopheles stephensi
Order: Diptera
Two complete operons encoding cytochrome bo3-type ubiquinol terminal oxidases (cyoABCD-1 and cyoABCD-2) were found in most Asaia genomes, possibly offering alternative terminal oxidases and allowing the flexible transition of respiratory pathways. Genes involved in the production of 2,3-butandiol and inositol have been found in Asaia sp. W12, possibly contributing to biofilm formation and stress tolerance.
2.70%
17.7
Morganella morganii
RISB0611
Bactrocera dorsalis
Order: Diptera
may hydrolysing nitrogenous waste and providing metabolizable nitrogen for B. dorsalis
0.02%
16.7
Bacillus sp. Cs-700
RISB0791
Anopheles barbirostris
Order: Diptera
without this midgut flora showed delayed development to become adult
0.07%
16.4
Asaia
RISB0014
Aedes aegypti
Order: Diptera
The bacterium Asaia is considered a highly promising candidate for arboviral control in Aedes mosquitoes.Asaia could play a role in inhibiting CHIKV within Ae. aegypti.
2.70%
16.1
Escherichia coli
RISB1769
Calliphoridae
Order: Diptera
None
1.02%
16.0
Acinetobacter sp. WY4
RISB2083
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.11%
15.7
Paenibacillus sp. FSL W8-0426
RISB2098
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.05%
15.6
Acinetobacter sp. NEB149
RISB2083
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.05%
15.6
Asaia
RISB2533
Anopheles stephensi
Order: Diptera
Asaia sp. strain effectively lodged in the female gut and salivary glands, sites that are crucial for Plasmodium sp. development and transmission
2.70%
15.6
Chryseobacterium sp.
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.03%
15.6
Erwinia aphidicola
RISB1705
Phlebotomus papatasi
Order: Diptera
None
0.51%
15.5
Pseudomonas sp. CIP-10
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
5.32%
15.1
Acetobacter
RISB1865
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.12%
15.1
Variovorax sp. PBL-E5
RISB1712
Phlebotomus papatasi
Order: Diptera
None
0.04%
15.0
Wolbachia
RISB0766
Aedes fluviatilis
Order: Diptera
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
0.04%
15.0
Brevundimonas sp. MF30-B
RISB1703
Phlebotomus papatasi
Order: Diptera
None
0.03%
15.0
Buchnera aphidicola
RISB0051
Episyrphus balteatus
Order: Diptera
None
0.01%
15.0
Wolbachia
RISB0779
Drosophila melanogaster
Order: Diptera
Wolbachia infection affects differential gene expression in Drosophila testis.Genes involved in carbohydrate metabolism, lysosomal degradation, proteolysis, lipid metabolism, and immune response were upregulated in the presence of Wolbachia
0.04%
14.8
Wolbachia
RISB1408
Anastrepha fraterculus
Order: Diptera
Wolbachia is the only known reproductive symbiont present in these morphotypes. Wolbachia reduced the ability for embryonic development in crosses involving cured females and infected males within each morphotype (uni-directional CI).
0.04%
14.7
Acetobacter
RISB0961
Drosophila melanogaster
Order: Diptera
The exist of Acetobacter had a balancing effect on food ingestion when carbohydrate levels were high in the warmer months, stabilizing fitness components of flies across the year.
0.12%
13.7
Pseudomonas sp. CIP-10
RISB2224
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
5.32%
13.7
Shewanella
RISB1924
Anopheles gambiae
Order: Diptera
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
0.04%
12.6
Comamonas
RISB2021
Bactrocera dorsalis
Order: Diptera
This group in the immature stages may be helping the insects to cope with oxidative stress by supplementing available oxygen.
0.02%
12.5
Staphylococcus
RISB0427
Anopheles sinensis
Order: Diptera
be identified in each part of the hyperendemic area of this study has a potential role to interact with malaria parasites.
0.05%
12.5
Acetobacter
RISB0184
Drosophila melanogaster
Order: Diptera
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
0.12%
12.4
Pseudomonas sp. CIP-10
RISB0700
Nilaparvata lugens
Order: Hemiptera
Pseudomonas sp. composition and abundance correlated with BPH survivability
5.32%
11.8
Gluconobacter
RISB0016
Aedes aegypti
Order: Diptera
Gluconobacter might increase the susceptibility of Ae. aegypti to CHIKV infection.
0.09%
11.7
Gluconobacter
RISB1882
Drosophila suzukii
Order: Diptera
produce volatile substances that attract female D. suzukii
0.09%
11.3
Komagataeibacter
RISB1883
Drosophila suzukii
Order: Diptera
produce volatile substances that attract female D. suzukii
0.05%
11.2
Cedecea
RISB1570
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.19%
10.9
Peribacillus
RISB1877
Aedes aegypti
Order: Diptera
gut microbiome
0.11%
10.4
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
1.02%
10.3
Staphylococcus
RISB1881
Aedes aegypti
Order: Diptera
gut microbiome
0.05%
10.3
Comamonas
RISB1875
Aedes aegypti
Order: Diptera
gut microbiome
0.02%
10.3
Gluconobacter
RISB0876
Drosophila suzukii
Order: Diptera
None
0.09%
10.1
Burkholderia gladioli
RISB1172
Lagria villosa
Order: Coleoptera
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
0.05%
10.1
Comamonas
RISB2020
Bactrocera dorsalis
Order: Diptera
None
0.02%
10.0
Myroides
RISB0626
Musca altica
Order: Diptera
None
0.02%
10.0
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
0.01%
10.0
Acinetobacter sp. WY4
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.11%
9.8
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
0.01%
9.8
Burkholderia gladioli
RISB1729
Lagria hirta
Order: Coleoptera
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
0.05%
9.4
Streptomyces sp. WAC00303
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.15%
9.1
Streptomyces sp. T12
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.06%
9.0
Burkholderia gladioli
RISB1604
Lagria villosa
Order: Coleoptera
Bacteria produce icosalide, an unusual two-tailed lipocyclopeptide antibiotic,which is active against entomopathogenic bacteria, thus adding to the chemical armory protecting beetle offspring
0.05%
8.9
Streptomyces sp. WAC00303
RISB2334
Sirex noctilio
Order: Hymenoptera
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
0.15%
8.9
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
1.02%
8.7
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
3.68%
8.7
Sodalis praecaptivus
RISB0122
Nezara viridula
Order: Hemiptera
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies.
0.01%
8.6
Sodalis praecaptivus
RISB1718
Sitophilus zeamais
Order: Coleoptera
we investigated the role of a quorum sensing(QS ) system in S. praecaptivus and found that it negatively regulates a potent insect-killing phenotype
0.01%
8.0
Proteus vulgaris
RISB0001
Leptinotarsa decemlineata
Order: Coleoptera
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
0.02%
7.7
Leclercia adecarboxylata
RISB1757
Spodoptera frugiperda
Order: Lepidoptera
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
0.10%
6.9
Zymobacter palmae
RISB1324
Vespa mandarinia
Order: Hymenoptera
None
1.92%
6.9
Kosakonia sp. BYX6
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.06%
6.5
Erwinia sp. QL-Z3
RISB0808
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-12 oxidation pathway
0.04%
6.5
Kosakonia sp. SMBL-WEM22
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.04%
6.5
Leclercia adecarboxylata
RISB1758
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.10%
6.2
Proteus vulgaris
RISB2460
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
0.02%
6.0
Erwinia sp. QL-Z3
RISB1986
Bombyx mori
Order: Lepidoptera
producing cellulase and amylase
0.04%
5.7
Agrobacterium tumefaciens
RISB0650
Melanaphis bambusae
Order: Hemiptera
None
0.11%
5.1
Staphylococcus
RISB0945
Callosobruchus maculatus
Order: Coleoptera
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
0.05%
5.1
Oecophyllibacter saccharovorans
RISB1194
Oecophylla smaragdina
Order: Hymenoptera
None
0.02%
5.0
Rahnella
RISB1623
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.10%
4.9
Clostridium
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.04%
4.3
Halomonas
RISB1808
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
2.84%
4.2
Yersinia
RISB0492
Cimex hemipterus
Order: Hemiptera
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
0.83%
3.3
Halomonas
RISB1374
Bemisia tabaci
Order: Hemiptera
None
2.84%
2.8
Pseudonocardia
RISB0947
Acromyrmex
Order: Hymenoptera
Pseudonocardia in the Acromyrmex leaf-cutter ants as a protective partner against the entomopathogenic fungus Metarhizium
0.02%
2.4
Rahnella
RISB1800
Dendroctonus valens
Order: Coleoptera
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth
0.10%
2.3
Rahnella
RISB0741
Dendroctonus ponderosae
Order: Coleoptera
R. aquatilis decreased (−)-α-pinene (38%) and (+)-α-pinene (46%) by 40% and 45% (by GC-MS), respectively
0.10%
2.2
Delftia
RISB0083
Osmia cornifrons
Order: Hymenoptera
be known to exhibit antibiotic activity, suggesting their potential protective role against pathogens
0.13%
2.2
Pseudonocardia
RISB1218
Mycocepurus smithii
Order: Hymenoptera
produce secondary metabolites with antibiotic activity that protects the fungus garden against pathogens
0.02%
2.1
Sphingomonas
RISB0420
Aphis gossypii
Order: Hemiptera
Sphingomonas could mediate A. gossypii resistance to imidacloprid by hydroxylation and nitroreduction
0.04%
2.1
Xenorhabdus
RISB1372
Spodoptera frugiperda
Order: Lepidoptera
the products of the symbiont gene cluster inhibit Spodoptera frugiperda phenoloxidase activity
0.04%
1.9
Sphingomonas
RISB1307
Aphis gossypii
Order: Hemiptera
have been previously described in associations with phloem-feeding insects, in low abundances
0.04%
1.9
Corynebacterium
RISB0363
Pagiophloeus tsushimanus
Order: Coleoptera
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
0.07%
1.9
Corynebacterium
RISB0531
Helicoverpa armigera
Order: Lepidoptera
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
0.07%
1.7
Rhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
0.16%
1.7
Sphingomonas
RISB0134
Spodoptera frugiperda
Order: Lepidoptera
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
0.04%
1.7
Delftia
RISB0806
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-19 oxidation pathway
0.13%
1.6
Xenorhabdus
RISB2270
Acyrthosiphon pisum
Order: Hemiptera
have the gene PIN1 encoding the protease inhibitor protein against aphids
0.04%
1.5
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.04%
1.4
Massilia
RISB2151
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.03%
1.3
Delftia
RISB1754
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.13%
1.3
Cronobacter
RISB0247
Tenebrio molitor
Order: Coleoptera
may be indirectly involved in the digestion of PE
0.16%
1.1
Clostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.04%
1.1
Dickeya
RISB1086
Rhodnius prolixus
Order: Hemiptera
supply enzymatic biosynthesis of B-complex vitamins
0.04%
1.1
Neokomagataea
RISB1560
Oecophylla smaragdina
Order: Hymenoptera
may be related with the formic acid production
0.04%
1.0
Yersinia
RISB0407
Anaphes nitens
Order: Hymenoptera
None
0.83%
0.8
Corynebacterium
RISB2360
Bombyx mori
Order: Lepidoptera
producing lipase in a gut environment
0.07%
0.8
Kluyvera
RISB1064
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.03%
0.3
Cedecea
RISB0504
Plutella xylostella
Order: Lepidoptera
None
0.19%
0.2
Flavobacterium
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
0.11%
0.1
Clostridium
RISB1959
Pyrrhocoridae
Order: Hemiptera
None
0.04%
0.0
Cupriavidus
RISB0694
Alydus tomentosus
Order: Hemiptera
None
0.04%
0.0

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR28387178
761.5 MB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table