SRR28089900 - Matsumurasca onukii

Basic Information

Run: SRR28089900

Assay Type: WGS

Bioproject: PRJNA720281

Biosample: SAMN31614811

Bytes: 4629723170

Center Name: ANHUI AGRICULTURAL UNIVERSITY

Sequencing Information

Instrument: HiSeq X Ten

Library Layout: PAIRED

Library Selection: RANDOM

Platform: ILLUMINA

Geographic Information

Country: China

Continent: Asia

Location Name: China: Xuancheng

Latitude/Longitude: 30.98 N 119.14 E

Sample Information

Host: Matsumurasca onukii

Isolation: tea plantation

Biosample Model: Metagenome or environmental

Collection Date: 2021-07-22

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Pantoea sp. SOD02
RISB0118
Nezara viridula
Order: Hemiptera
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies;transmitted bacteria impacted plant chemical defenses and were able to degrade toxic plant metabolites, aiding the shield bug in its nutrition
12.43%
32.4
Pantoea sp. SOD02
RISB0119
Nezara viridula
Order: Hemiptera
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies.
12.43%
31.0
Pantoea sp. SOD02
RISB1491
Nezara viridula
Order: Hemiptera
help stinkbugs to feed on soybean developing seeds in spite of its chemical defenses by degrading isoflavonoids and deactivate soybean protease inhibitors
12.43%
30.5
Pseudomonas sp. RC10
RISB0700
Nilaparvata lugens
Order: Hemiptera
Pseudomonas sp. composition and abundance correlated with BPH survivability
7.84%
24.3
Serratia marcescens
RISB0120
Nezara viridula
Order: Hemiptera
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies;transmitted bacteria impacted plant chemical defenses and were able to degrade toxic plant metabolites, aiding the shield bug in its nutrition
0.08%
20.1
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
0.07%
20.1
Serratia symbiotica
RISB0576
Acyrthosiphon pisum
Order: Hemiptera
process of regression from winged to wingless morph was inhibited by Serratia symbiotica. The existence of the symbiont did not affect the body mass and fecundity of adult aphids, but it increased the body weight of nymphs and temporally increased the quantity of a primary symbiont, Buchnera aphidicola
0.03%
20.0
Arsenophonus sp. aPb
RISB1047
Aphis gossypii
Order: Hemiptera
secondary symbiont reduction led to reduction of the total life span and intrinsic rate of natural increase as well as appearance of the deformed dead offspring. H. defensa and Arsenophonus contributed to the fitness of A. gossypii by enhancing its performance, but not through parasitoid resistance.
0.01%
20.0
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
0.07%
19.8
Serratia marcescens
RISB0747
Rhodnius prolixus
Order: Hemiptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.08%
19.8
Arsenophonus sp. aPb
RISB1300
Aphis gossypii
Order: Hemiptera
Arsenophonus sp. can have different effects on its hosts, including obligate mutualism in blood-sucking insects, improving the performance of whiteflies, or through facultative mutualism by protecting psyllids against parasitoid attacks.
0.01%
19.8
Clostridium sp. 001
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.03%
19.3
Clostridium sp. DL-VIII
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.01%
19.2
Buchnera aphidicola
RISB0685
Acyrthosiphon pisum
Order: Hemiptera
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
0.07%
18.9
Pseudomonas sp. F3-2
RISB0700
Nilaparvata lugens
Order: Hemiptera
Pseudomonas sp. composition and abundance correlated with BPH survivability
2.32%
18.8
Pseudomonas sp. CIP-10
RISB0700
Nilaparvata lugens
Order: Hemiptera
Pseudomonas sp. composition and abundance correlated with BPH survivability
2.20%
18.7
Arsenophonus sp. aPb
RISB1048
Aphis gossypii
Order: Hemiptera
symbiont reduction led to reduction of the total life span and intrinsic rate of natural increase as well as appearance of the deformed dead offspring
0.01%
18.0
Spiroplasma ixodetis
RISB0842
Dactylopius coccus
Order: Hemiptera
use the T4SS to interact with the Dactylopius cells, which show a strong interaction and molecular signaling in the symbiosis
0.03%
17.5
Lactococcus lactis
RISB0337
Riptortus pedestris
Order: Hemiptera
can be utilized as a novel probiotic which increase the survival rate of insects
0.03%
16.6
Enterococcus faecalis
RISB0336
Riptortus pedestris
Order: Hemiptera
can be utilized as a novel probiotic which increase the survival rate of insects
0.03%
16.6
Escherichia coli
RISB0412
Melanaphis sacchari
Order: Hemiptera
None
0.39%
15.4
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
0.29%
15.3
Agrobacterium tumefaciens
RISB0650
Melanaphis bambusae
Order: Hemiptera
None
0.07%
15.1
Candidatus Erwinia haradaeae
RISB1632
Lachninae
Order: Hemiptera
None
0.02%
15.0
Flavobacterium johnsoniae
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
0.02%
15.0
Rickettsia canadensis
RISB1898
Bemisia tabaci
Order: Hemiptera
None
0.01%
15.0
Cupriavidus pauculus
RISB0694
Alydus tomentosus
Order: Hemiptera
None
0.01%
15.0
Staphylococcus xylosus
RISB0672
Melanaphis bambusae
Order: Hemiptera
None
0.01%
15.0
Wolbachia
RISB1444
Laodelphax striatellus
Order: Hemiptera
Wolbachia-infected host embryonic development genes revealed Ddx1 mRNAs, which is required for host viability and in the germ line, accumulated in the posterior region of 3-day-old embryos
0.63%
14.4
Wolbachia
RISB1539
Cimex lectularius
Order: Hemiptera
wCle provisions the bed bug with B vitamins.It is likely that because of wCle’s nutritional contribution to the bed bug, its titer increases in relation to bed bug growth and development.
0.63%
14.4
Sodalis
RISB0122
Nezara viridula
Order: Hemiptera
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies.
0.01%
13.6
Pectobacterium
RISB1889
Pseudococcus longispinus
Order: Hemiptera
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
0.03%
13.4
Sodalis
RISB1888
Pseudococcus longispinus
Order: Hemiptera
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
0.01%
13.4
Yokenella
RISB1492
Nezara viridula
Order: Hemiptera
help stinkbugs to feed on soybean developing seeds in spite of its chemical defenses by degrading isoflavonoids and deactivate soybean protease inhibitors
0.00%
13.1
Sodalis
RISB0998
Bactericera trigonica
Order: Hemiptera
Sodalis infecting B. trigonica was more closely related to symbionts infecting weevils, stink bugs and tsetse flies than to those from psyllid species
0.01%
13.0
Wolbachia
RISB0491
Cimex hemipterus
Order: Hemiptera
the disruption of the abundant Wolbachia could be related to the enhanced susceptibility towards the insecticides
0.63%
12.9
Xenorhabdus
RISB2270
Acyrthosiphon pisum
Order: Hemiptera
have the gene PIN1 encoding the protease inhibitor protein against aphids
0.01%
11.5
Pectobacterium
RISB0798
Pseudoregma bambucicola
Order: Hemiptera
may help P. bambucicola feed on the stalks of bamboo
0.03%
11.1
Dickeya
RISB1086
Rhodnius prolixus
Order: Hemiptera
supply enzymatic biosynthesis of B-complex vitamins
0.03%
11.1
Klebsiella pneumoniae
RISB2185
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.35%
10.4
Bacillus cereus
RISB2161
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.34%
10.3
Bacillus thuringiensis
RISB2177
Armadillidae
Order: Isopoda
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.06%
10.1
Curtobacterium
RISB0900
Myzus persicae
Order: Hemiptera
None
0.05%
10.1
Helicobacter
RISB0662
Melanaphis bambusae
Order: Hemiptera
None
0.04%
10.0
Lactococcus lactis
RISB0131
Ceratitis capitata
Order: Diptera
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The  colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
0.03%
10.0
Klebsiella oxytoca
RISB0130
Ceratitis capitata
Order: Diptera
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The  colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
0.03%
10.0
Bacillus subtilis
RISB0481
Bombyx mori
Order: Lepidoptera
B. subtilis can generate a variety of primary and secondary metabolites, such as B vitamins and antimicrobial compounds, to provide micronutrients and enhance the pathogen resistance of their insect host; The antimicrobial compounds secreted by B. subtilis were the primary driving force for the reconstruction of intestinal microbiota
0.03%
10.0
Halomonas
RISB1374
Bemisia tabaci
Order: Hemiptera
None
0.03%
10.0
Paraburkholderia
RISB0125
Physopelta gutta
Order: Hemiptera
None
0.03%
10.0
Microbacterium
RISB0904
Myzus persicae
Order: Hemiptera
None
0.03%
10.0
Enterobacter sp. HNDS-6
RISB0893
Bactrocera dorsalis
Order: Diptera
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
0.02%
10.0
Rahnella aquatilis
RISB1623
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.20%
10.0
Paenibacillus polymyxa
RISB2195
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.02%
10.0
Aeromonas
RISB2063
Sitobion miscanthi
Order: Hemiptera
None
0.02%
10.0
Methylorubrum
RISB0903
Myzus persicae
Order: Hemiptera
None
0.02%
10.0
Enterococcus mundtii
RISB1733
Spodoptera littoralis
Order: Lepidoptera
actively secretes a stable class IIa bacteriocin (mundticin KS) against invading bacteria, including the opportunistic pathogens E. faecalis and E. casseliflavus, but not against other gut residents, facilitating the normal development of host gut microbiota
0.01%
10.0
Enterobacter sp. RHBSTW-00175
RISB0893
Bactrocera dorsalis
Order: Diptera
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
0.01%
10.0
Listeria monocytogenes
RISB2308
Drosophila melanogaster
Order: Diptera
L. monocytogenes infection disrupts host energy metabolism by depleting energy stores (triglycerides and glycogen) and reducing metabolic pathway activity (beta-oxidation and glycolysis). The infection affects antioxidant defense by reducing uric acid levels and alters amino acid metabolism. These metabolic changes are accompanied by melanization, potentially linked to decreased tyrosine levels.
0.01%
10.0
Achromobacter
RISB0383
Aphis gossypii
Order: Hemiptera
None
0.01%
10.0
Metabacillus
RISB0902
Myzus persicae
Order: Hemiptera
None
0.01%
10.0
Enterobacter sp. RHBSTW-00994
RISB0893
Bactrocera dorsalis
Order: Diptera
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
0.00%
10.0
Enterococcus mundtii
RISB0476
Spodoptera litura
Order: Lepidoptera
The ingestion of bacteria negatively affected the development and nutritional physiology of insect. The bacteria after successful establishment started degrading the gut wall and invaded the haemocoel thereby causing the death of the host.
0.01%
9.8
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
0.39%
9.7
Streptomyces sp. T12
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.41%
9.4
Streptomyces sp. WAC00303
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.29%
9.3
Stenotrophomonas maltophilia
RISB1122
Bombyx mori
Order: Lepidoptera
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
0.22%
9.2
Streptomyces sp. T12
RISB2334
Sirex noctilio
Order: Hymenoptera
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
0.41%
9.1
Mammaliicoccus sciuri
RISB0075
Bombyx mori
Order: Lepidoptera
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
0.02%
9.0
Staphylococcus xylosus
RISB2497
Anticarsia gemmatalis
Order: Lepidoptera
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
0.01%
9.0
Klebsiella michiganensis
RISB1052
Bactrocera dorsalis
Order: Diptera
K. michiganensis BD177 has the strain-specific ability to provide three essential amino acids (phenylalanine, tryptophan and methionine) and two vitamins B (folate and riboflavin) to B. dorsalis
0.05%
8.9
Acinetobacter pittii
RISB1977
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
0.02%
8.8
Xanthomonas sp. MLO165
RISB0498
Xylocopa appendiculata
Order: Hymenoptera
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
0.02%
8.8
Lactococcus lactis
RISB0967
Oulema melanopus
Order: Coleoptera
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
0.03%
8.6
Citrobacter sp. C13
RISB1503
Bactrocera dorsalis
Order: Diptera
Pesticide-degrading bacteria were frequently detected from pesticide-resistant insects. Susceptible insects became resistant after inoculation of the pesticide-degrading symbiont
0.02%
8.6
Citrobacter sp. RHB25-C09
RISB1503
Bactrocera dorsalis
Order: Diptera
Pesticide-degrading bacteria were frequently detected from pesticide-resistant insects. Susceptible insects became resistant after inoculation of the pesticide-degrading symbiont
0.01%
8.6
Citrobacter amalonaticus
RISB0192
Hermetia illucens
Order: Diptera
can directly promote the expression of two gene families related to intestinal protein metabolism: Hitryp serine protease trypsin family and Himtp metallopeptidase family
0.01%
8.4
Sphingobacterium sp. G1-14
RISB2227
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.02%
8.4
Sphingobacterium sp. ML3W
RISB2227
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.00%
8.3
Paenibacillus sp. KACC 21273
RISB0774
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.03%
8.3
Morganella morganii
RISB0772
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.01%
8.3
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.39%
8.1
Blattabacterium cuenoti
RISB0133
Panesthiinae
Order: Blattodea
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
0.04%
8.0
Morganella morganii
RISB0008
Phormia regina
Order: Diptera
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.01%
8.0
Stenotrophomonas maltophilia
RISB1227
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.22%
7.9
Morganella morganii
RISB1867
Costelytra zealandica
Order: Coleoptera
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
0.01%
7.9
Proteus vulgaris
RISB0001
Leptinotarsa decemlineata
Order: Coleoptera
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
0.02%
7.7
Rahnella aquatilis
RISB1800
Dendroctonus valens
Order: Coleoptera
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth
0.20%
7.4
Rahnella aquatilis
RISB0741
Dendroctonus ponderosae
Order: Coleoptera
R. aquatilis decreased (−)-α-pinene (38%) and (+)-α-pinene (46%) by 40% and 45% (by GC-MS), respectively
0.20%
7.3
Stenotrophomonas maltophilia
RISB1141
Hermetia illucens
Order: Diptera
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
0.22%
7.0
Xanthomonas sp. MLO165
RISB0217
Xylocopa appendiculata
Order: Hymenoptera
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
0.02%
7.0
Snodgrassella alvi
RISB1423
Bombus spp.
Order: Hymenoptera
The bumble bee microbiome slightly increases survivorship when the host is exposed to selenate
0.01%
6.9
Leclercia adecarboxylata
RISB1757
Spodoptera frugiperda
Order: Lepidoptera
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
0.03%
6.9
Sphingomonas sp. CV7422
RISB0134
Spodoptera frugiperda
Order: Lepidoptera
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
0.12%
6.8
Staphylococcus xylosus
RISB2247
Anticarsia gemmatalis
Order: Lepidoptera
mitigation of the negative effects of proteinase inhibitors produced by the host plant
0.01%
6.7
Sphingomonas sp. NIC1
RISB0134
Spodoptera frugiperda
Order: Lepidoptera
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
0.05%
6.7
Sphingomonas sp. NY01
RISB0134
Spodoptera frugiperda
Order: Lepidoptera
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
0.03%
6.7
Erwinia sp. QL-Z3
RISB0808
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-12 oxidation pathway
0.02%
6.4
Kosakonia sp. MUSA4
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.02%
6.4
Erwinia sp. E602
RISB0808
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-12 oxidation pathway
0.01%
6.4
Paenibacillus sp. KACC 21273
RISB0813
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-9 oxidation pathway
0.03%
6.4
Kosakonia sp. BYX6
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.01%
6.4
Leclercia adecarboxylata
RISB1758
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.03%
6.2
Acinetobacter calcoaceticus
RISB0017
Scirpophaga incertulas
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.01%
6.1
Lactiplantibacillus plantarum
RISB0674
Drosophila melanogaster
Order: Diptera
could effectively inhibit fungal spore germinations
0.01%
6.0
Proteus vulgaris
RISB2460
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
0.02%
6.0
Lysinibacillus fusiformis
RISB1417
Psammotermes hypostoma
Order: Blattodea
isolates showed significant cellulolytic activity
0.02%
6.0
Providencia rettgeri
RISB1001
Anastrepha obliqua
Order: Diptera
improve the sexual competitiveness of males
0.02%
5.9
Blattabacterium cuenoti
RISB0518
Cryptocercus punctulatus
Order: Blattodea
collaborative arginine biosynthesis
0.04%
5.7
Methylobacterium sp. WL1
RISB2053
Atractomorpha sinensis
Order: Orthoptera
associated with cellulolytic enzymes
0.02%
5.7
Methylobacterium sp. FF17
RISB2053
Atractomorpha sinensis
Order: Orthoptera
associated with cellulolytic enzymes
0.01%
5.7
Providencia rettgeri
RISB1169
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
0.02%
5.6
Chryseobacterium sp. POL2
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.02%
5.6
Chryseobacterium sp. JJR-5R
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.01%
5.6
Providencia alcalifaciens
RISB1168
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
0.00%
5.6
Blattabacterium cuenoti
RISB0093
Blattella germanica
Order: Blattodea
obligate endosymbiont
0.04%
5.5
Lysinibacillus fusiformis
RISB1066
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.02%
5.2
Variovorax sp. PAMC26660
RISB1712
Phlebotomus papatasi
Order: Diptera
None
0.03%
5.0
Lactobacillus
RISB1866
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.02%
5.0
Snodgrassella alvi
RISB1947
Apis cerana
Order: Hymenoptera
None
0.01%
5.0
Lactiplantibacillus plantarum
RISB0608
Drosophila melanogaster
Order: Diptera
None
0.01%
5.0
Yersinia massiliensis
RISB0407
Anaphes nitens
Order: Hymenoptera
None
0.01%
5.0
Francisella
RISB1907
Bombyx mori
Order: Lepidoptera
After infection with F. tularensis, the induction of melanization and nodulation, which are immune responses to bacterial infection, were inhibited in silkworms. Pre-inoculation of silkworms with F. tularensis enhanced the expression of antimicrobial peptides and resistance to infection by pathogenic bacteria.
0.01%
5.0
Pseudocitrobacter corydidari
RISB0696
Corydidarum magnifica
Order: Blattodea
None
0.00%
5.0
Treponema
RISB2377
termite
Order: Blattodea
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
0.01%
4.9
Microbacterium
RISB0084
Osmia cornifrons
Order: Hymenoptera
In O. cornifrons larvae, Microbacterium could contribute to the balance and resiliency of the gut microbiome under stress conditions. In addition, Rhodococcus was found in O. cornifrons larvae and is known for its detoxification capabilities
0.03%
4.9
Novosphingobium
RISB1837
Dendroctonus valens
Order: Coleoptera
It can trongly degrade naringenin, and pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and facilitate naringenin biodegradation by the microbiotas.
0.02%
4.0
Lactobacillus
RISB0292
Lymantria dispar asiatica
Order: Lepidoptera
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
0.02%
3.4
Raoultella
RISB2226
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.03%
3.4
Amycolatopsis
RISB0483
Trachymyrmex smithi
Order: Hymenoptera
inhibited the growth of Pseudonocardia symbionts under laboratory conditions. The novel analog nocamycin V from the strain was identified as the antibacterial compound
0.01%
3.4
Candidatus Blochmanniella
RISB2542
Camponotus
Order: Hymenoptera
Blochmannia provide essential amino acids to its host,Camponotus floridanus, and that it may also play a role in nitrogen recycling via its functional urease
0.01%
3.2
Amycolatopsis
RISB0199
Trachymyrmex
Order: Hymenoptera
produce antibiotic EC0-0501 that has strong activity against ant-associated Actinobacteria and may also play a role in bacterial competition in this niche
0.01%
3.1
Candidatus Blochmanniella
RISB1827
Camponotus floridanus
Order: Hymenoptera
a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission
0.01%
3.1
Lactobacillus
RISB0715
Spodoptera frugiperda
Order: Lepidoptera
Have the function of nutrient absorption, energy metabolism, the plant’s secondary metabolites degradation, insect immunity regulation, and so on
0.02%
2.9
Candidatus Blochmanniella
RISB2448
Camponotus floridanus
Order: Hymenoptera
nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling
0.01%
2.8
Shewanella
RISB1924
Anopheles gambiae
Order: Diptera
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
0.03%
2.6
Bartonella
RISB1673
Apis mellifera
Order: Hymenoptera
a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream
0.01%
2.6
Bacteroides
RISB0256
Leptocybe invasa
Order: Hymenoptera
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
0.06%
2.4
Bacteroides
RISB0090
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.06%
2.2
Bacteroides
RISB1183
Oryzaephilus surinamensis
Order: Coleoptera
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
0.06%
2.1
Streptococcus
RISB2625
Galleria mellonella
Order: Lepidoptera
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
0.07%
2.1
Massilia
RISB2151
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.78%
2.1
Rhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
0.39%
2.0
Microbacterium
RISB2274
Ostrinia nubilalis
Order: Lepidoptera
extreme cellulolytic enzymes, at extreme (pH 13) conditions, exhibited cellulolytic properties
0.03%
1.9
Xenorhabdus
RISB1372
Spodoptera frugiperda
Order: Lepidoptera
the products of the symbiont gene cluster inhibit Spodoptera frugiperda phenoloxidase activity
0.01%
1.9
Streptococcus
RISB2624
Reticulitermes flavipes
Order: Blattodea
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
0.07%
1.7
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.38%
1.7
Nostoc
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.03%
1.5
Duganella
RISB2152
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.13%
1.4
Leuconostoc
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.01%
1.4
Halomonas
RISB1808
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.03%
1.4
Raoultella
RISB1672
Spodoptera frugiperda
Order: Lepidoptera
downregulated POX but upregulated trypsin PI in this plant species
0.03%
1.4
Streptococcus
RISB2604
Homona magnanima
Order: Lepidoptera
influence the growth of Bacillus thuringiensis in the larvae
0.07%
1.3
Paraclostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.04%
1.1
Raoultella
RISB1007
Monochamus alternatus
Order: Coleoptera
may help M. alternatus degrade cellulose and pinene
0.03%
1.1
Cronobacter
RISB0247
Tenebrio molitor
Order: Coleoptera
may be indirectly involved in the digestion of PE
0.02%
1.0
Aeromonas
RISB2456
Bombyx mori
Order: Lepidoptera
able to utilize the CMcellulose and xylan
0.02%
0.8
Curtobacterium
RISB1910
Hyles euphorbiae
Order: Lepidoptera
able to degrade alkaloids and/or latex
0.05%
0.8
Gordonia
RISB1912
Hyles euphorbiae
Order: Lepidoptera
able to degrade alkaloids and/or latex
0.02%
0.8
Cedecea
RISB1570
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.03%
0.8
Mycobacterium
RISB1156
Nicrophorus concolor
Order: Coleoptera
produces Antimicrobial compounds
0.04%
0.7
Aeromonas
RISB2086
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.02%
0.6
Priestia
RISB0839
Helicoverpa armigera
Order: Lepidoptera
producing amylase
0.06%
0.4
Peribacillus
RISB1877
Aedes aegypti
Order: Diptera
gut microbiome
0.04%
0.3
Achromobacter
RISB1869
Aedes aegypti
Order: Diptera
gut microbiome
0.01%
0.3
Kluyvera
RISB1064
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.04%
0.3
Pectobacterium
RISB1772
Muscidae
Order: Diptera
None
0.03%
0.0
Cedecea
RISB0504
Plutella xylostella
Order: Lepidoptera
None
0.03%
0.0
Legionella
RISB1687
Polyplax serrata
Order: Phthiraptera
None
0.03%
0.0
Treponema
RISB0169
Reticulitermes flaviceps
Order: Blattodea
None
0.01%
0.0
Neisseria
RISB0512
Plutella xylostella
Order: Lepidoptera
None
0.01%
0.0
Vagococcus
RISB0042
Aldrichina grahami
Order: Diptera
None
0.01%
0.0

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR28089900
4.3 GB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table