SRR28034370 - Aulonothroscus sp.

Basic Information

Run: SRR28034370

Assay Type: WGS

Bioproject: PRJNA1062330

Biosample: SAMN39984751

Bytes: 3340595079

Center Name: MAX PLANCK INSTITUTE FOR CHEMICAL ECOLOGY

Sequencing Information

Instrument: Illumina HiSeq 3000

Library Layout: PAIRED

Library Selection: RANDOM

Platform: ILLUMINA

Quality Control Information

Filter Percentage: 0.0731

QC Average Length: 147

Retained Reads: 45872618

Geographic Information

Country: Australia

Continent: Oceania

Location Name: Australia

Latitude/Longitude: 26.890000 S 151.616000 E

Sample Information

Host: Aulonothroscus sp.

Isolation: -

Biosample Model: Metagenome or environmental

Collection Date: 2010

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Pseudomonas sp. NC02
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
2.02%
21.8
Pseudomonas sp. Colony2
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
1.65%
21.5
Pseudomonas sp. NC02
RISB2224
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
2.02%
20.4
Burkholderia gladioli
RISB1172
Lagria villosa
Order: Coleoptera
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
0.18%
20.2
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
2.05%
19.8
Acinetobacter sp. NEB149
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.08%
19.8
Acinetobacter sp. Marseille-Q1620
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.02%
19.7
Burkholderia gladioli
RISB1729
Lagria hirta
Order: Coleoptera
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
0.18%
19.5
Burkholderia gladioli
RISB1604
Lagria villosa
Order: Coleoptera
Bacteria produce icosalide, an unusual two-tailed lipocyclopeptide antibiotic,which is active against entomopathogenic bacteria, thus adding to the chemical armory protecting beetle offspring
0.18%
19.0
Lactococcus lactis
RISB0967
Oulema melanopus
Order: Coleoptera
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
0.17%
18.7
Enterococcus faecalis
RISB0497
Cryptolestes ferrugineus
Order: Coleoptera
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
1.02%
18.6
Sphingobacterium sp. CZ-2
RISB2227
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.11%
18.5
Sphingobacterium sp. E70
RISB2227
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.04%
18.4
Sphingobacterium sp. WM
RISB2227
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.03%
18.4
Enterococcus faecalis
RISB2042
Harpalus pensylvanicus
Order: Coleoptera
E. faecalis facilitate seed consumption by H. pensylvanicus, possibly by contributing digestive enzymes to their host
1.02%
18.4
Morganella morganii
RISB1867
Costelytra zealandica
Order: Coleoptera
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
0.03%
17.9
Proteus vulgaris
RISB0001
Leptinotarsa decemlineata
Order: Coleoptera
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
0.09%
17.8
Bacillus sp. FJAT-22090
RISB1645
Osphranteria coerulescens
Order: Coleoptera
The isolate has cellulolytic activity and can hydrolyze CMC, avicel, cellulose and sawdust with broad temperature and pH stability
0.04%
17.6
Enterococcus faecalis
RISB0374
Tribolium castaneum
Order: Coleoptera
modulates host phosphine resistance by interfering with the redox system
1.02%
17.5
Bacillus cereus
RISB1056
Oryctes rhinoceros
Order: Coleoptera
provide symbiotic digestive functions to Oryctes
1.40%
17.4
Bacillus cereus
RISB1778
Lissorhoptrus oryzophilus
Order: Coleoptera
might be promising paratransgenesis candidates
1.40%
17.3
Serratia marcescens
RISB1295
Nicrophorus vespilloides
Order: Coleoptera
producing antibacterial compound Serrawettin W2, which has antibacterial and nematode-inhibiting effects
0.11%
17.2
Acinetobacter sp. NEB149
RISB0706
Curculio chinensis
Order: Coleoptera
facilitate the degradation of tea saponin; genome contains 47 genes relating to triterpenoids degradation
0.08%
17.2
Lactococcus lactis
RISB1430
Rhynchophorus ferrugineus
Order: Coleoptera
promote the development and body mass gain of RPW larvae by improving their nutrition metabolism
0.17%
17.1
Serratia marcescens
RISB0365
Pagiophloeus tsushimanus
Order: Coleoptera
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
0.11%
16.9
Paludibacter propionicigenes
RISB2055
Odontotaenius disjunctus
Order: Coleoptera
microbial fixation of nitrogen that is important for this beetle to subsist on woody biomass
0.03%
16.9
Streptomyces sp. T12
RISB0777
Copris tripartitus
Order: Coleoptera
contribute brood ball hygiene by inhibiting fungal parasites in the environment
0.27%
16.9
Klebsiella pneumoniae
RISB1153
Tenebrio molitor
Order: Coleoptera
degrading plastics
1.46%
16.8
Morganella morganii
RISB1548
Costelytra zealandica
Order: Coleoptera
symbionts residing in the colleterial glands produce phenol 1 as the female sex pheromone
0.03%
16.8
Morganella morganii
RISB1868
Costelytra zealandica
Order: Coleoptera
produces phenol as the sex pheromone of the host from tyrosine in the colleterial gland
0.03%
16.8
Streptomyces sp. WAC00303
RISB0777
Copris tripartitus
Order: Coleoptera
contribute brood ball hygiene by inhibiting fungal parasites in the environment
0.15%
16.7
Streptomyces sp. Tu 2975
RISB0777
Copris tripartitus
Order: Coleoptera
contribute brood ball hygiene by inhibiting fungal parasites in the environment
0.05%
16.6
Paenibacillus sp. IHBB 10380
RISB0813
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-9 oxidation pathway
0.14%
16.5
Serratia marcescens
RISB1158
Nicrophorus vespilloides
Order: Coleoptera
produces an antibacterial cyclic lipopeptide called serrawettin W2
0.11%
16.4
Bacteroides
RISB1183
Oryzaephilus surinamensis
Order: Coleoptera
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
4.38%
16.4
Stenotrophomonas maltophilia
RISB0139
Tenebrio molitor
Order: Coleoptera
correlated with polyvinyl chloride PVC degradation
0.40%
16.4
Paludibacter propionicigenes
RISB2056
Odontotaenius disjunctus
Order: Coleoptera
plays an important role in nitrogen fixation
0.03%
15.9
Staphylococcus hominis
RISB1071
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.41%
15.6
Lactococcus lactis
RISB1065
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.17%
15.4
Staphylococcus epidermidis
RISB1070
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.11%
15.3
Novosphingobium
RISB1837
Dendroctonus valens
Order: Coleoptera
It can trongly degrade naringenin, and pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and facilitate naringenin biodegradation by the microbiotas.
0.12%
14.1
Wolbachia
RISB1452
Octodonta nipae
Order: Coleoptera
Wolbachia harbored dominantly in a female than the male adult, while, no significant differences were observed between male and female body parts and tissues
0.37%
13.5
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
1.76%
13.1
Wolbachia
RISB2107
Sitophilus zeamais
Order: Coleoptera
Wolbachia directly favored weevil fertility and exhibited only mild indirect effects, usually enhancing the SZPE effect
0.37%
12.8
Wolbachia
RISB1282
Ips sp.
Order: Coleoptera
inducing cytoplasmic incompatibility, resulting in reproductive distortions and hence
0.37%
12.1
Corynebacterium
RISB0363
Pagiophloeus tsushimanus
Order: Coleoptera
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
0.08%
11.9
Nostoc
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.23%
11.7
Rhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
0.09%
11.7
Klebsiella pneumoniae
RISB2185
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
1.46%
11.5
Leuconostoc
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.04%
11.5
Halomonas
RISB1808
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.14%
11.5
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
2.05%
11.4
Mycobacterium
RISB1156
Nicrophorus concolor
Order: Coleoptera
produces Antimicrobial compounds
0.18%
10.8
Blattabacterium cuenoti
RISB0133
Panesthiinae
Order: Blattodea
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
2.74%
10.7
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
0.57%
10.6
Lysinibacillus
RISB1066
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.32%
10.5
Aeromonas
RISB1145
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.16%
10.5
Exiguobacterium
RISB1152
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.03%
10.4
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
0.57%
10.3
Comamonas
RISB1061
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.08%
10.3
Kluyvera
RISB1064
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.03%
10.3
Paenibacillus polymyxa
RISB2195
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.17%
10.2
Dysgonomonas
RISB1481
Brachinus elongatulus
Order: Coleoptera
None
0.17%
10.2
Listeria monocytogenes
RISB2308
Drosophila melanogaster
Order: Diptera
L. monocytogenes infection disrupts host energy metabolism by depleting energy stores (triglycerides and glycogen) and reducing metabolic pathway activity (beta-oxidation and glycolysis). The infection affects antioxidant defense by reducing uric acid levels and alters amino acid metabolism. These metabolic changes are accompanied by melanization, potentially linked to decreased tyrosine levels.
0.14%
10.1
Candidatus Walczuchella monophlebidarum
RISB2075
Llaveia axin axin
Order: Hemiptera
could be supplying most of these precursors for the amino acid biosynthesis as it has the potential to make ribulose-5P from ribose-1P and also PEP and pyruvate from glycolysis. It is also capable of producing homocysteine from homoserine for methionine biosynthesis,
0.05%
10.1
Gilliamella apicola
RISB0102
Apis mellifera
Order: Hymenoptera
Gilliamella apicola carries the gene for the desaturase FADS2, which is able to metabolize polyunsaturated fatty acids from pollen and synthesize endocannabinoid, a lipogenic neuroactive substance, thereby modulating reward learning and memory in honeybees.
0.02%
10.0
Treponema primitia
RISB2377
termite
Order: Blattodea
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
0.02%
9.9
Stenotrophomonas maltophilia
RISB1122
Bombyx mori
Order: Lepidoptera
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
0.40%
9.4
Candidatus Nasuia deltocephalinicola
RISB2283
Nephotettix cincticeps
Order: Hemiptera
Oral administration of tetracycline to nymphal N. cincticeps resulted in retarded growth, high mortality rates, and failure in adult emergence, suggesting important biological roles of the symbionts for the host insect
0.03%
9.4
Buchnera aphidicola
RISB0685
Acyrthosiphon pisum
Order: Hemiptera
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
0.57%
9.4
Clostridium sp. MB40-C1
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.05%
9.3
Clostridium sp. JN-9
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.04%
9.3
Clostridium sp. OS1-26
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.03%
9.3
Mammaliicoccus sciuri
RISB0075
Bombyx mori
Order: Lepidoptera
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
0.14%
9.1
Candidatus Schneideria nysicola
RISB0872
Nysius sp.
Order: Hemiptera
synthesize four B vitamins(Pan, pantothenate;Fol, folate; Rib, riboflavin; Pyr, pyridoxine) and five Essential Amino Acids(Ile, isoleucine; Val, valine; Lys, lysine; Thr, threonine; Phe, phenylalanine)
0.02%
9.0
Staphylococcus xylosus
RISB2497
Anticarsia gemmatalis
Order: Lepidoptera
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
0.02%
9.0
Candidatus Carsonella ruddii
RISB0394
Cacopsylla pyricola
Order: Hemiptera
Carsonella produces most essential amino acids (EAAs) for C. pyricola, Psyllophila complements the genes missing in Carsonella for the tryptophan pathway and synthesizes some vitamins and carotenoids
0.02%
9.0
Blattabacterium cuenoti
RISB0518
Cryptocercus punctulatus
Order: Blattodea
collaborative arginine biosynthesis
2.74%
8.4
Paenibacillus sp. IHBB 10380
RISB0774
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.14%
8.4
Candidatus Portiera aleyrodidarum
RISB1193
Bemisia tabaci
Order: Hemiptera
synthesizing essential amino acid (e.g. tryptophan, leucine and L-Isoleucine), Bemisia tabaci provides vital nutritional support for growth, development and reproduction
0.02%
8.4
Candidatus Gullanella endobia
RISB1885
Ferrisia virgata
Order: Hemiptera
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
0.02%
8.4
Spiroplasma sp. BIUS-1
RISB1353
Cephus cinctus
Order: Hymenoptera
The bacterium also encoded biosynthetic pathways for essential vitamins B2, B3, and B9. We identified putative Spiroplasma virulence genes: cardiolipin and chitinase.
0.03%
8.4
Blattabacterium cuenoti
RISB0093
Blattella germanica
Order: Blattodea
obligate endosymbiont
2.74%
8.2
Stenotrophomonas maltophilia
RISB1227
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.40%
8.1
Spiroplasma poulsonii
RISB1346
Drosophila melanogaster
Order: Diptera
S. poulsonii protects its host against parasitoid wasps and nematodes by the action of toxins from the family of Ribosome Inactivating Proteins
0.04%
7.9
Escherichia coli
RISB2120
Galleria mellonella
Order: Lepidoptera
mediate trans-generational immune priming
2.05%
7.9
Spiroplasma poulsonii
RISB2264
Drosophila melanogaster
Order: Diptera
Spiroplasma coopts the yolk transport and uptake machinery to colonize the germ line and ensure efficient vertical transmission
0.04%
7.6
Carnobacterium maltaromaticum
RISB1693
Plutella xylostella
Order: Lepidoptera
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
0.06%
7.6
Candidatus Nasuia deltocephalinicola
RISB2282
Nephotettix cincticeps
Order: Hemiptera
With the antibiotic, nymphal growth was remarkably retarded, and a number of nymphs either died or failed to attain adulthood
0.03%
7.5
Klebsiella pneumoniae
RISB2459
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
1.46%
7.5
Candidatus Nasuia deltocephalinicola
RISB0262
Maiestas dorsalis
Order: Hemiptera
are responsible for synthesizing two essential amino acids (histidine and methionine) and riboflavin (vitamin B2)
0.03%
7.3
Candidatus Portiera aleyrodidarum
RISB2289
Bemisia tabaci
Order: Hemiptera
encoding the capability to synthetize, or participate in the synthesis of, several amino acids and carotenoids,
0.02%
7.2
Candidatus Portiera aleyrodidarum
RISB1973
Bemisia tabaci
Order: Hemiptera
a primary symbiont, which compensates for the deficient nutritional composition of its food sources
0.02%
7.0
Snodgrassella alvi
RISB1423
Bombus spp.
Order: Hymenoptera
The bumble bee microbiome slightly increases survivorship when the host is exposed to selenate
0.02%
6.9
Bacteroides
RISB0256
Leptocybe invasa
Order: Hymenoptera
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
4.38%
6.7
Carnobacterium maltaromaticum
RISB1692
Plutella xylostella
Order: Lepidoptera
participate in the synthesis of host lacking amino acids histidine and threonine
0.06%
6.7
Bacteroides
RISB0090
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
4.38%
6.5
Candidatus Walczuchella monophlebidarum
RISB2074
Llaveia axin axin
Order: Hemiptera
may provide metabolic precursors to the flavobacterial endosymbiont
0.05%
6.4
Lactiplantibacillus plantarum
RISB0674
Drosophila melanogaster
Order: Diptera
could effectively inhibit fungal spore germinations
0.22%
6.2
Proteus vulgaris
RISB2460
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
0.09%
6.1
Providencia rettgeri
RISB1001
Anastrepha obliqua
Order: Diptera
improve the sexual competitiveness of males
0.13%
6.0
Carnobacterium maltaromaticum
RISB1691
Plutella xylostella
Order: Lepidoptera
activity of cellulose and hemicellulose
0.06%
5.8
Chryseobacterium sp. CP-77
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.24%
5.8
Providencia sp. PROV188
RISB1574
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.06%
5.8
Providencia sp. PROV188
RISB0984
Nasonia vitripennis
Order: Hymenoptera
may highly associated with diapause
0.06%
5.8
Chryseobacterium sp. Y16C
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.11%
5.7
Chryseobacterium sp. G0186
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.07%
5.6
Candidatus Karelsulcia muelleri
RISB1591
Philaenus spumarius
Order: Hemiptera
None
0.42%
5.4
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
0.41%
5.4
Enterobacter hormaechei
RISB1331
Zeugodacus cucurbitae
Order: Diptera
None
0.23%
5.2
Lactiplantibacillus plantarum
RISB0608
Drosophila melanogaster
Order: Diptera
None
0.22%
5.2
Flavobacterium johnsoniae
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
0.16%
5.2
Lactobacillus
RISB1866
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.12%
5.1
Candidatus Erwinia haradaeae
RISB1632
Lachninae
Order: Hemiptera
None
0.08%
5.1
Zymomonas mobilis
RISB1326
Vespa mandarinia
Order: Hymenoptera
None
0.05%
5.1
Rickettsia bellii
RISB1897
Bemisia tabaci
Order: Hemiptera
None
0.04%
5.0
Gilliamella apicola
RISB1945
Apis cerana
Order: Hymenoptera
None
0.02%
5.0
Candidatus Carsonella ruddii
RISB0748
Diaphorina citri
Order: Hemiptera
None
0.02%
5.0
Snodgrassella alvi
RISB1947
Apis cerana
Order: Hymenoptera
None
0.02%
5.0
Candidatus Legionella polyplacis
RISB1687
Polyplax serrata
Order: Phthiraptera
None
0.02%
5.0
Leadbettera
RISB2376
termite
Order: Blattodea
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
0.02%
4.9
Apibacter
RISB0603
Apis cerana
Order: Hymenoptera
The acquisition of genes for the degradation of the toxic monosaccharides potentiates Apibacter with the ability to utilize the pollen hydrolysis products, at the same time enabling monosaccharide detoxification for the host
0.06%
4.5
Xanthomonas
RISB0498
Xylocopa appendiculata
Order: Hymenoptera
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
0.32%
4.1
Lactobacillus
RISB0292
Lymantria dispar asiatica
Order: Lepidoptera
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
0.12%
3.5
Pectobacterium
RISB1889
Pseudococcus longispinus
Order: Hemiptera
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
0.04%
3.4
Candidatus Blochmanniella
RISB2542
Camponotus
Order: Hymenoptera
Blochmannia provide essential amino acids to its host,Camponotus floridanus, and that it may also play a role in nitrogen recycling via its functional urease
0.09%
3.2
Candidatus Blochmanniella
RISB1827
Camponotus floridanus
Order: Hymenoptera
a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission
0.09%
3.2
Lactobacillus
RISB0715
Spodoptera frugiperda
Order: Lepidoptera
Have the function of nutrient absorption, energy metabolism, the plant’s secondary metabolites degradation, insect immunity regulation, and so on
0.12%
3.0
Candidatus Blochmanniella
RISB2448
Camponotus floridanus
Order: Hymenoptera
nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling
0.09%
2.8
Shewanella
RISB1924
Anopheles gambiae
Order: Diptera
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
0.21%
2.8
Exiguobacterium
RISB0007
Phormia regina
Order: Diptera
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.03%
2.7
Bartonella
RISB1673
Apis mellifera
Order: Hymenoptera
a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream
0.08%
2.6
Streptococcus
RISB2625
Galleria mellonella
Order: Lepidoptera
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
0.60%
2.6
Comamonas
RISB2021
Bactrocera dorsalis
Order: Diptera
This group in the immature stages may be helping the insects to cope with oxidative stress by supplementing available oxygen.
0.08%
2.6
Psychrobacter
RISB1773
Calliphoridae
Order: Diptera
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
0.06%
2.5
Yersinia
RISB0492
Cimex hemipterus
Order: Hemiptera
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
0.06%
2.5
Blautia
RISB0091
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.23%
2.4
Liberibacter
RISB2310
Bactericerca cockerelli
Order: Hemiptera
manipulate plant signaling and defensive responses, suppress accumulation of defense transcripts like JA and SA
0.03%
2.3
Xanthomonas
RISB0217
Xylocopa appendiculata
Order: Hymenoptera
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
0.32%
2.3
Streptococcus
RISB2624
Reticulitermes flavipes
Order: Blattodea
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
0.60%
2.2
Coprococcus
RISB0092
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.05%
2.2
Agrobacterium
RISB0710
Fragariocoptes setiger
Order: Trombidiformes
it appears to form a biologically important association with the mite
0.60%
2.0
Streptococcus
RISB2604
Homona magnanima
Order: Lepidoptera
influence the growth of Bacillus thuringiensis in the larvae
0.60%
1.8
Corynebacterium
RISB0531
Helicoverpa armigera
Order: Lepidoptera
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
0.08%
1.7
Liberibacter
RISB2524
Bactericera cockerelli
Order: Hemiptera
Reduced expression of plant defensive gene in tomato probably for psyllid success
0.03%
1.7
Dysgonomonas
RISB1235
Hermetia illucens
Order: Diptera
provides the tools for degrading of a broad range of substrates
0.17%
1.4
Variovorax
RISB2153
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.03%
1.3
Lysinibacillus
RISB1416
Psammotermes hypostoma
Order: Blattodea
isolates showed significant cellulolytic activity
0.32%
1.3
Paraclostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.14%
1.2
Pectobacterium
RISB0798
Pseudoregma bambucicola
Order: Hemiptera
may help P. bambucicola feed on the stalks of bamboo
0.04%
1.1
Aeromonas
RISB2456
Bombyx mori
Order: Lepidoptera
able to utilize the CMcellulose and xylan
0.16%
1.0
Liberibacter
RISB2333
Cacopsylla pyri
Order: Hemiptera
behaves as an endophyte rather than a pathogen
0.03%
1.0
Exiguobacterium
RISB0582
Aleurodicus rugioperculatus
Order: Hemiptera
may indirectly affect whitefly oviposition
0.03%
0.9
Corynebacterium
RISB2360
Bombyx mori
Order: Lepidoptera
producing lipase in a gut environment
0.08%
0.8
Nocardioides
RISB1914
Hyles euphorbiae
Order: Lepidoptera
able to degrade alkaloids and/or latex
0.03%
0.8
Cedecea
RISB1570
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.04%
0.8
Aeromonas
RISB2086
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.16%
0.7
Agrobacterium
RISB0650
Melanaphis bambusae
Order: Hemiptera
None
0.60%
0.6
Priestia
RISB0839
Helicoverpa armigera
Order: Lepidoptera
producing amylase
0.25%
0.6
Peribacillus
RISB1877
Aedes aegypti
Order: Diptera
gut microbiome
0.27%
0.6
Cupriavidus
RISB0694
Alydus tomentosus
Order: Hemiptera
None
0.40%
0.4
Bombilactobacillus
RISB0617
Spodoptera frugiperda
Order: Lepidoptera
degrade amygdalin
0.04%
0.4
Comamonas
RISB1875
Aedes aegypti
Order: Diptera
gut microbiome
0.08%
0.4
Alcaligenes
RISB1871
Aedes aegypti
Order: Diptera
gut microbiome
0.07%
0.4
Vagococcus
RISB0042
Aldrichina grahami
Order: Diptera
None
0.26%
0.3
Myroides
RISB0626
Musca altica
Order: Diptera
None
0.25%
0.3
Halomonas
RISB1374
Bemisia tabaci
Order: Hemiptera
None
0.14%
0.1
Helicobacter
RISB0662
Melanaphis bambusae
Order: Hemiptera
None
0.14%
0.1
Apibacter
RISB0604
Apis cerana
Order: Hymenoptera
None
0.06%
0.1
Yersinia
RISB0407
Anaphes nitens
Order: Hymenoptera
None
0.06%
0.1
Weeksella
RISB1265
Rheumatobates bergrothi
Order: Hemiptera
None
0.06%
0.1
Metabacillus
RISB0902
Myzus persicae
Order: Hemiptera
None
0.05%
0.1
Pectobacterium
RISB1772
Muscidae
Order: Diptera
None
0.04%
0.0
Cedecea
RISB0504
Plutella xylostella
Order: Lepidoptera
None
0.04%
0.0
Sediminibacterium
RISB0244
Spodoptera frugiperda
Order: Lepidoptera
None
0.04%
0.0
Variovorax
RISB1712
Phlebotomus papatasi
Order: Diptera
None
0.03%
0.0
Kaistia
RISB0829
Spodoptera frugiperda
Order: Lepidoptera
None
0.03%
0.0
Candidatus Profftia
RISB1664
Adelgidae
Order: Hemiptera
None
0.02%
0.0

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR28034370
3.1 GB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table