SRR28034347 - Trixagus dermestoides
Basic Information
Run: SRR28034347
Assay Type: WGS
Bioproject: PRJNA1062330
Biosample: SAMN39984754
Bytes: 5696567669
Center Name: MAX PLANCK INSTITUTE FOR CHEMICAL ECOLOGY
Sequencing Information
Instrument: Illumina NovaSeq 6000
Library Layout: PAIRED
Library Selection: RANDOM
Platform: ILLUMINA
Geographic Information
Country: Germany
Continent: Europe
Location Name: Germany
Latitude/Longitude: 50.922011 N 11.585965 E
Sample Information
Host: Trixagus dermestoides
Isolation: -
Biosample Model: Metagenome or environmental
Collection Date: 2019
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Pantoea sp. SOD02
Species-level Match
Host Order Match
|
RISB0736 |
Psylliodes chrysocephala
Order: Coleoptera
|
Laboratory-reared and field-collected P. chrysocephala all contained three core genera Pantoea, Acinetobacter and Pseudomonas, and reintroduction of Pantoea sp. Pc8 in antibiotic-fed beetles restored isothiocyanate degradation ability in vivo (by 16S rRNA gene sequencing and LC-MS)
|
0.00% |
20.0
|
Serratia sp. UGAL515B_01
Species-level Match
Host Order Match
|
RISB0308 |
Rhopalotria slossonae
Order: Coleoptera
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores
|
0.00% |
20.0
|
Burkholderia gladioli
Species-level Match
Host Order Match
|
RISB1172 |
Lagria villosa
Order: Coleoptera
|
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
|
0.00% |
20.0
|
Pseudomonas sp. FP1742
Species-level Match
Host Order Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.01% |
19.8
|
Serratia liquefaciens
Species-level Match
Host Order Match
|
RISB1624 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.00% |
19.8
|
Pseudomonas sp. C9-3
Species-level Match
Host Order Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.00% |
19.8
|
Acinetobacter sp. MYb10
Species-level Match
Host Order Match
|
RISB0730 |
Curculio chinensis
Order: Coleoptera
|
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
|
0.00% |
19.7
|
Burkholderia gladioli
Species-level Match
Host Order Match
|
RISB1729 |
Lagria hirta
Order: Coleoptera
|
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
|
0.00% |
19.3
|
Burkholderia gladioli
Species-level Match
Host Order Match
|
RISB1604 |
Lagria villosa
Order: Coleoptera
|
Bacteria produce icosalide, an unusual two-tailed lipocyclopeptide antibiotic,which is active against entomopathogenic bacteria, thus adding to the chemical armory protecting beetle offspring
|
0.00% |
18.8
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB0967 |
Oulema melanopus
Order: Coleoptera
|
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
|
0.01% |
18.6
|
Candidatus Sodalis pierantonius
Species-level Match
Host Order Match
|
RISB2035 |
Sitophilus oryzae
Order: Coleoptera
|
endosymbiont dynamics parallels numerous transcriptional changes in weevil developing adults and affects several biological processes, including metabolism and development
|
0.03% |
18.5
|
Pseudomonas sp. FP1742
Species-level Match
Host Order Match
|
RISB2224 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.01% |
18.4
|
Sphingobacterium sp. ML3W
Species-level Match
Host Order Match
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.01% |
18.4
|
Sphingobacterium sp. SYP-B4668
Species-level Match
Host Order Match
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.00% |
18.3
|
Enterobacter sp. C2
Species-level Match
Host Order Match
|
RISB2221 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.00% |
18.3
|
Klebsiella oxytoca
Species-level Match
Host Order Match
|
RISB1506 |
Cleonus trivittatus
Order: Coleoptera
|
Antibiotic-treated larvae suffered growth retardation on a diet containing plant extract or swainsonine. Gut bacteria showed toxin-degradation activities in vitro
|
0.00% |
18.2
|
Sodalis praecaptivus
Species-level Match
Host Order Match
|
RISB1718 |
Sitophilus zeamais
Order: Coleoptera
|
we investigated the role of a quorum sensing(QS ) system in S. praecaptivus and found that it negatively regulates a potent insect-killing phenotype
|
0.06% |
18.0
|
Citrobacter freundii
Species-level Match
Host Order Match
|
RISB0517 |
Leptinotarsa decemlineata
Order: Coleoptera
|
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
|
0.04% |
17.9
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB1867 |
Costelytra zealandica
Order: Coleoptera
|
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
|
0.01% |
17.9
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
0.12% |
17.8
|
Citrobacter freundii
Species-level Match
Host Order Match
|
RISB0127 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
0.04% |
17.8
|
Sodalis glossinidius
Species-level Match
Host Order Match
|
RISB2588 |
Sitophilus zeamais
Order: Coleoptera
|
maintains and expresses inv/spa genes encoding a type III secretion system homologous to that used for invasion by bacterial pathogens
|
0.05% |
17.7
|
Proteus vulgaris
Species-level Match
Host Order Match
|
RISB0001 |
Leptinotarsa decemlineata
Order: Coleoptera
|
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
|
0.01% |
17.7
|
Bacillus sp. S3
Species-level Match
Host Order Match
|
RISB1645 |
Osphranteria coerulescens
Order: Coleoptera
|
The isolate has cellulolytic activity and can hydrolyze CMC, avicel, cellulose and sawdust with broad temperature and pH stability
|
0.01% |
17.6
|
Bacillus sp. FJAT-22090
Species-level Match
Host Order Match
|
RISB1645 |
Osphranteria coerulescens
Order: Coleoptera
|
The isolate has cellulolytic activity and can hydrolyze CMC, avicel, cellulose and sawdust with broad temperature and pH stability
|
0.00% |
17.6
|
Bacillus subtilis
Species-level Match
Host Order Match
|
RISB0494 |
Sitophilus oryzae
Order: Coleoptera
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
|
0.01% |
17.6
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB0497 |
Cryptolestes ferrugineus
Order: Coleoptera
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
|
0.01% |
17.6
|
Enterobacter sp. C2
Species-level Match
Host Order Match
|
RISB0496 |
Sitophilus oryzae
Order: Coleoptera
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
|
0.00% |
17.6
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB2042 |
Harpalus pensylvanicus
Order: Coleoptera
|
E. faecalis facilitate seed consumption by H. pensylvanicus, possibly by contributing digestive enzymes to their host
|
0.01% |
17.4
|
Serratia liquefaciens
Species-level Match
Host Order Match
|
RISB1801 |
Dendroctonus valens
Order: Coleoptera
|
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth
|
0.00% |
17.2
|
Acinetobacter sp. MYb10
Species-level Match
Host Order Match
|
RISB0706 |
Curculio chinensis
Order: Coleoptera
|
facilitate the degradation of tea saponin; genome contains 47 genes relating to triterpenoids degradation
|
0.00% |
17.1
|
Enterobacter cloacae
Species-level Match
Host Order Match
|
RISB1428 |
Rhynchophorus ferrugineus
Order: Coleoptera
|
promote the development and body mass gain of RPW larvae by improving their nutrition metabolism
|
0.02% |
16.9
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB1430 |
Rhynchophorus ferrugineus
Order: Coleoptera
|
promote the development and body mass gain of RPW larvae by improving their nutrition metabolism
|
0.01% |
16.9
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB1548 |
Costelytra zealandica
Order: Coleoptera
|
symbionts residing in the colleterial glands produce phenol 1 as the female sex pheromone
|
0.01% |
16.8
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB1868 |
Costelytra zealandica
Order: Coleoptera
|
produces phenol as the sex pheromone of the host from tyrosine in the colleterial gland
|
0.01% |
16.8
|
Streptomyces sp. T12
Species-level Match
Host Order Match
|
RISB0777 |
Copris tripartitus
Order: Coleoptera
|
contribute brood ball hygiene by inhibiting fungal parasites in the environment
|
0.17% |
16.8
|
Streptomyces sp. NBC_01324
Species-level Match
Host Order Match
|
RISB0777 |
Copris tripartitus
Order: Coleoptera
|
contribute brood ball hygiene by inhibiting fungal parasites in the environment
|
0.12% |
16.7
|
Streptomyces sp. NBC_01296
Species-level Match
Host Order Match
|
RISB0777 |
Copris tripartitus
Order: Coleoptera
|
contribute brood ball hygiene by inhibiting fungal parasites in the environment
|
0.05% |
16.6
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB0374 |
Tribolium castaneum
Order: Coleoptera
|
modulates host phosphine resistance by interfering with the redox system
|
0.01% |
16.5
|
Pantoea sp. SOD02
Species-level Match
Host Order Match
|
RISB0814 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-14 oxidation pathway
|
0.00% |
16.4
|
Acinetobacter sp. MYb10
Species-level Match
Host Order Match
|
RISB0804 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-11 oxidation pathway
|
0.00% |
16.4
|
Lactococcus sp. NH2-7C
Species-level Match
Host Order Match
|
RISB0811 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-13 oxidation pathway
|
0.00% |
16.4
|
Kosakonia sp. MUSA4
Species-level Match
Host Order Match
|
RISB0810 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-16 oxidation pathway
|
0.00% |
16.4
|
Paenibacillus sp. FSL P2-0089
Species-level Match
Host Order Match
|
RISB0813 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-9 oxidation pathway
|
0.01% |
16.4
|
Paenibacillus sp. FSL W8-0194
Species-level Match
Host Order Match
|
RISB0813 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-9 oxidation pathway
|
0.00% |
16.4
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB0139 |
Tenebrio molitor
Order: Coleoptera
|
correlated with polyvinyl chloride PVC degradation
|
0.15% |
16.2
|
Klebsiella pneumoniae
Species-level Match
Host Order Match
|
RISB1153 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.38% |
15.7
|
Wolbachia pipientis
Species-level Match
Host Order Match
|
RISB2621 |
Tribolium confusum
Order: Coleoptera
|
induces cytoplasmic incompatibility
|
0.03% |
15.7
|
Aeromonas sp. FDAARGOS 1405
Species-level Match
Host Order Match
|
RISB1145 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.02% |
15.4
|
Aeromonas sp. CA23
Species-level Match
Host Order Match
|
RISB1145 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.00% |
15.4
|
Diaphorobacter aerolatus
Species-level Match
Host Order Match
|
RISB1062 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.04% |
15.3
|
Lysinibacillus fusiformis
Species-level Match
Host Order Match
|
RISB1066 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.01% |
15.2
|
Staphylococcus epidermidis
Species-level Match
Host Order Match
|
RISB1070 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.00% |
15.2
|
Pantoea agglomerans
Species-level Match
Host Order Match
|
RISB1858 |
Lissorhoptrus oryzophilus
Order: Coleoptera
|
None
|
0.01% |
15.0
|
Rhodobacter
Host Order Match
|
RISB0138 |
Coccinella septempunctata
Order: Coleoptera
|
Rhodanobacter genera can utilize various carbon sources, including cellobiose. In larvae of longhorned beetles that feed on plants rich in carbohydrates (cellulose and hemicellulose) and lignin, Rhodanobacter can help the larvae digest more carbon nutrients through carbon sequestration
|
0.00% |
15.0
|
Rahnella
Host Order Match
|
RISB1623 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.01% |
14.8
|
Sphingobium
Host Order Match
|
RISB1837 |
Dendroctonus valens
Order: Coleoptera
|
It can trongly degrade naringenin, and pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and facilitate naringenin biodegradation by the microbiotas.
|
0.01% |
14.0
|
Novosphingobium
Host Order Match
|
RISB1837 |
Dendroctonus valens
Order: Coleoptera
|
It can trongly degrade naringenin, and pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and facilitate naringenin biodegradation by the microbiotas.
|
0.00% |
14.0
|
Raoultella
Host Order Match
|
RISB2226 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.01% |
13.4
|
Rahnella
Host Order Match
|
RISB1800 |
Dendroctonus valens
Order: Coleoptera
|
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth
|
0.01% |
12.2
|
Rahnella
Host Order Match
|
RISB0741 |
Dendroctonus ponderosae
Order: Coleoptera
|
R. aquatilis decreased (−)-α-pinene (38%) and (+)-α-pinene (46%) by 40% and 45% (by GC-MS), respectively
|
0.01% |
12.1
|
Bacteroides
Host Order Match
|
RISB1183 |
Oryzaephilus surinamensis
Order: Coleoptera
|
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
|
0.03% |
12.1
|
Rickettsia
Host Order Match
|
RISB1279 |
Ips sp.
Order: Coleoptera
|
inducing cytoplasmic incompatibility, resulting in reproductive distortions and hence
|
0.23% |
11.9
|
Micrococcus
Host Order Match
|
RISB2277 |
Leptinotarsa decemlineata
Order: Coleoptera
|
extreme cellulolytic enzymes, at extreme (pH 12) conditions, exhibited cellulolytic properties
|
0.00% |
11.9
|
Rickettsia
Host Order Match
|
RISB0970 |
Oulema melanopus
Order: Coleoptera
|
may be associated with insect reproduction and maturation of their sexual organs
|
0.23% |
11.8
|
Rickettsia
Host Order Match
|
RISB1954 |
Sitona obsoletus
Order: Coleoptera
|
potential defensive properties against he parasitoid Microctonus aethiopoides
|
0.23% |
11.8
|
Rhizobium
Host Order Match
|
RISB0135 |
Coccinella septempunctata
Order: Coleoptera
|
be commonly found in plant roots and they all have nitrogen fixation abilities
|
0.02% |
11.6
|
Bradyrhizobium
Host Order Match
|
RISB0135 |
Coccinella septempunctata
Order: Coleoptera
|
be commonly found in plant roots and they all have nitrogen fixation abilities
|
0.02% |
11.6
|
Vibrio
Host Order Match
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.24% |
11.6
|
Nostoc
Host Order Match
|
RISB0812 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-18 oxidation pathway
|
0.04% |
11.5
|
Halomonas
Host Order Match
|
RISB1808 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.08% |
11.4
|
Raoultella
Host Order Match
|
RISB1007 |
Monochamus alternatus
Order: Coleoptera
|
may help M. alternatus degrade cellulose and pinene
|
0.01% |
11.0
|
Cronobacter
Host Order Match
|
RISB0247 |
Tenebrio molitor
Order: Coleoptera
|
may be indirectly involved in the digestion of PE
|
0.01% |
11.0
|
Mycobacterium
Host Order Match
|
RISB1156 |
Nicrophorus concolor
Order: Coleoptera
|
produces Antimicrobial compounds
|
0.02% |
10.7
|
Rhodococcus
Host Order Match
|
RISB1157 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.04% |
10.4
|
Klebsiella pneumoniae
Species-level Match
|
RISB2185 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.38% |
10.4
|
Exiguobacterium
Host Order Match
|
RISB1152 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.00% |
10.4
|
Kluyvera
Host Order Match
|
RISB1064 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.01% |
10.2
|
Comamonas
Host Order Match
|
RISB1061 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.01% |
10.2
|
Buchnera aphidicola
Species-level Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
0.08% |
10.1
|
Wolbachia pipientis
Species-level Match
|
RISB0766 |
Aedes fluviatilis
Order: Diptera
|
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
|
0.03% |
10.0
|
Paenibacillus polymyxa
Species-level Match
|
RISB2195 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.01% |
10.0
|
Listeria monocytogenes
Species-level Match
|
RISB2308 |
Drosophila melanogaster
Order: Diptera
|
L. monocytogenes infection disrupts host energy metabolism by depleting energy stores (triglycerides and glycogen) and reducing metabolic pathway activity (beta-oxidation and glycolysis). The infection affects antioxidant defense by reducing uric acid levels and alters amino acid metabolism. These metabolic changes are accompanied by melanization, potentially linked to decreased tyrosine levels.
|
0.01% |
10.0
|
Micromonospora
Host Order Match
|
RISB2034 |
Harpalus sinicus
Order: Coleoptera
|
None
|
0.01% |
10.0
|
Candidatus Hamiltonella defensa
Species-level Match
|
RISB1049 |
Aphis gossypii
Order: Hemiptera
|
secondary symbiont reduction led to reduction of the total life span and intrinsic rate of natural increase as well as appearance of the deformed dead offspring. H. defensa and Arsenophonus contributed to the fitness of A. gossypii by enhancing its performance, but not through parasitoid resistance.
|
0.00% |
10.0
|
Arsenophonus sp. aPb
Species-level Match
|
RISB1047 |
Aphis gossypii
Order: Hemiptera
|
secondary symbiont reduction led to reduction of the total life span and intrinsic rate of natural increase as well as appearance of the deformed dead offspring. H. defensa and Arsenophonus contributed to the fitness of A. gossypii by enhancing its performance, but not through parasitoid resistance.
|
0.00% |
10.0
|
Francisella tularensis
Species-level Match
|
RISB1907 |
Bombyx mori
Order: Lepidoptera
|
After infection with F. tularensis, the induction of melanization and nodulation, which are immune responses to bacterial infection, were inhibited in silkworms. Pre-inoculation of silkworms with F. tularensis enhanced the expression of antimicrobial peptides and resistance to infection by pathogenic bacteria.
|
0.00% |
10.0
|
Deinococcus sp. QL22
Species-level Match
|
RISB1649 |
Camponotus japonicus
Order: Hymenoptera
|
Four new aminoglycolipids, deinococcucins A–D, were discovered from a Deinococcus sp. strain isolated from the gut of queen carpenter ants, Camponotus japonicus, showed functional ability of inducing the quinone reductase production in host cells
|
0.00% |
9.9
|
Buchnera aphidicola
Species-level Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
0.08% |
9.8
|
Arsenophonus sp. aPb
Species-level Match
|
RISB1300 |
Aphis gossypii
Order: Hemiptera
|
Arsenophonus sp. can have different effects on its hosts, including obligate mutualism in blood-sucking insects, improving the performance of whiteflies, or through facultative mutualism by protecting psyllids against parasitoid attacks.
|
0.00% |
9.7
|
Candidatus Hamiltonella defensa
Species-level Match
|
RISB1296 |
Sitobion miscanthi
Order: Hemiptera
|
Increase the reproductive capacity of wheat aphids, increase the number of offspring and reduce the age of first breeding, suppressed the salicylic acid (SA)- and jasmonic acid (JA)-related defense pathways and SA/JA accumulation
|
0.00% |
9.6
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
0.12% |
9.4
|
Clostridium sp. OS1-26
Species-level Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.06% |
9.3
|
Clostridium sp. LQ25
Species-level Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.01% |
9.2
|
Clostridium sp. 001
Species-level Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.00% |
9.2
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1122 |
Bombyx mori
Order: Lepidoptera
|
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
|
0.15% |
9.2
|
Candidatus Hamiltonella defensa
Species-level Match
|
RISB0630 |
Acyrthosiphon pisum
Order: Hemiptera
|
In response to ladybirds, symbiont-infected pea aphids exhibited proportionately fewer evasive defences (dropping and walking away) than non-infected (cured) pea aphids, but more frequent aggressive kicking
|
0.00% |
9.1
|
Candidatus Schneideria nysicola
Species-level Match
|
RISB0872 |
Nysius sp.
Order: Hemiptera
|
synthesize four B vitamins(Pan, pantothenate;Fol, folate; Rib, riboflavin; Pyr, pyridoxine) and five Essential Amino Acids(Ile, isoleucine; Val, valine; Lys, lysine; Thr, threonine; Phe, phenylalanine)
|
0.00% |
9.0
|
Mammaliicoccus sciuri
Species-level Match
|
RISB0075 |
Bombyx mori
Order: Lepidoptera
|
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
|
0.01% |
9.0
|
Buchnera aphidicola
Species-level Match
|
RISB0685 |
Acyrthosiphon pisum
Order: Hemiptera
|
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
|
0.08% |
8.9
|
Weissella cibaria
Species-level Match
|
RISB1982 |
Blattella germanica
Order: Blattodea
|
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
|
0.00% |
8.8
|
Citrobacter sp. RHB25-C09
Species-level Match
|
RISB1503 |
Bactrocera dorsalis
Order: Diptera
|
Pesticide-degrading bacteria were frequently detected from pesticide-resistant insects. Susceptible insects became resistant after inoculation of the pesticide-degrading symbiont
|
0.00% |
8.6
|
Candidatus Doolittlea endobia
Species-level Match
|
RISB1884 |
Maconellicoccus hirsutus
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.02% |
8.4
|
Lactobacillus sp. PV034
Species-level Match
|
RISB0292 |
Lymantria dispar asiatica
Order: Lepidoptera
|
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
|
0.00% |
8.4
|
Candidatus Gullanella endobia
Species-level Match
|
RISB1885 |
Ferrisia virgata
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.01% |
8.4
|
Candidatus Hoaglandella endobia
Species-level Match
|
RISB1886 |
Trionymus perrisii
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.01% |
8.4
|
Candidatus Mikella endobia
Species-level Match
|
RISB1887 |
Paracoccus marginatus
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.00% |
8.3
|
Arthrobacter sp. StoSoilB20
Species-level Match
|
RISB0769 |
Delia antiqua
Order: Diptera
|
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.00% |
8.3
|
Leucobacter aridicollis
Species-level Match
|
RISB0771 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.00% |
8.3
|
Wigglesworthia glossinidia
Species-level Match
|
RISB0369 |
Glossina morsitans
Order: Diptera
|
symbiont-derived factors, likely B vitamins, are critical for the proper function of both lipid biosynthesis and lipolysis to maintain tsetse fly fecundity
|
0.00% |
8.1
|
Arsenophonus sp. aPb
Species-level Match
|
RISB1048 |
Aphis gossypii
Order: Hemiptera
|
symbiont reduction led to reduction of the total life span and intrinsic rate of natural increase as well as appearance of the deformed dead offspring
|
0.00% |
8.0
|
Blattabacterium cuenoti
Species-level Match
|
RISB0133 |
Panesthiinae
Order: Blattodea
|
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
|
0.01% |
8.0
|
Candidatus Moranella endobia
Species-level Match
|
RISB2232 |
Planococcus citri
Order: Hemiptera
|
be responsible for the biosynthesis of most cellular components and energy provision, and controls most informational processes for the consortium
|
0.01% |
7.9
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1227 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.15% |
7.9
|
Weissella cibaria
Species-level Match
|
RISB0641 |
Formica
Order: Hymenoptera
|
exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew
|
0.00% |
7.7
|
Sphingobacterium faecium
Species-level Match
|
RISB1226 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.00% |
7.7
|
Wolbachia pipientis
Species-level Match
|
RISB1515 |
Drosophila melanogaster
Order: Diptera
|
increases the recombination rate observed across two genomic intervals and increases the efficacy of natural selection in hosts
|
0.03% |
7.6
|
Spiroplasma ixodetis
Species-level Match
|
RISB0842 |
Dactylopius coccus
Order: Hemiptera
|
use the T4SS to interact with the Dactylopius cells, which show a strong interaction and molecular signaling in the symbiosis
|
0.01% |
7.5
|
Psychrobacter sp. KFRI-CH2-11
Species-level Match
|
RISB1773 |
Calliphoridae
Order: Diptera
|
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
|
0.00% |
7.4
|
Proteus sp. NMG38-2
Species-level Match
|
RISB2315 |
Aedes aegypti
Order: Diptera
|
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
|
0.01% |
7.1
|
Proteus sp. CD3
Species-level Match
|
RISB2315 |
Aedes aegypti
Order: Diptera
|
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
|
0.00% |
7.1
|
Apilactobacillus kunkeei
Species-level Match
|
RISB0475 |
Apis mellifera
Order: Hymenoptera
|
A. kunkeei alleviated acetamiprid-induced symbiotic microbiota dysregulation and mortality in honeybees
|
0.00% |
7.1
|
Wigglesworthia glossinidia
Species-level Match
|
RISB1786 |
Glossina morsitans
Order: Diptera
|
Synthesis of a large number of B vitamins, to supplement the host nutritional deficiencies of the diet
|
0.00% |
7.0
|
Candidatus Ishikawella capsulata
Species-level Match
|
RISB2368 |
Megacopta punctatissima
Order: Hemiptera
|
Microbe compensates for nutritional deficiency of host diet by supplying essential amino acids
|
0.00% |
6.9
|
Snodgrassella alvi
Species-level Match
|
RISB1423 |
Bombus spp.
Order: Hymenoptera
|
The bumble bee microbiome slightly increases survivorship when the host is exposed to selenate
|
0.00% |
6.9
|
Sphingomonas sp. M1-B02
Species-level Match
|
RISB0134 |
Spodoptera frugiperda
Order: Lepidoptera
|
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
|
0.02% |
6.7
|
Corynebacterium sp. SCR221107
Species-level Match
|
RISB0531 |
Helicoverpa armigera
Order: Lepidoptera
|
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
|
0.00% |
6.7
|
Sphingomonas sp. FARSPH
Species-level Match
|
RISB0134 |
Spodoptera frugiperda
Order: Lepidoptera
|
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
|
0.00% |
6.6
|
Frischella perrara
Species-level Match
|
RISB2028 |
Diceroprocta semicincta
Order: Hemiptera
|
causes the formation of a scab-like structure on the gut epithelium of its host
|
0.00% |
6.6
|
Xenorhabdus bovienii
Species-level Match
|
RISB2270 |
Acyrthosiphon pisum
Order: Hemiptera
|
have the gene PIN1 encoding the protease inhibitor protein against aphids
|
0.00% |
6.5
|
Wigglesworthia glossinidia
Species-level Match
|
RISB2577 |
Glossina brevipalpis
Order: Diptera
|
provide its tsetse host with metabolites such as vitamins
|
0.00% |
6.1
|
Lactiplantibacillus plantarum
Species-level Match
|
RISB0674 |
Drosophila melanogaster
Order: Diptera
|
could effectively inhibit fungal spore germinations
|
0.00% |
6.0
|
Lysinibacillus fusiformis
Species-level Match
|
RISB1417 |
Psammotermes hypostoma
Order: Blattodea
|
isolates showed significant cellulolytic activity
|
0.01% |
6.0
|
Escherichia coli
Species-level Match
|
RISB2120 |
Galleria mellonella
Order: Lepidoptera
|
mediate trans-generational immune priming
|
0.12% |
5.9
|
Providencia rettgeri
Species-level Match
|
RISB1001 |
Anastrepha obliqua
Order: Diptera
|
improve the sexual competitiveness of males
|
0.01% |
5.9
|
Aeromonas sp. FDAARGOS 1405
Species-level Match
|
RISB2456 |
Bombyx mori
Order: Lepidoptera
|
able to utilize the CMcellulose and xylan
|
0.02% |
5.8
|
Candidatus Ishikawella capsulata
Species-level Match
|
RISB2543 |
Megacopta punctatissima
Order: Hemiptera
|
Enhance pest status of the insect host
|
0.00% |
5.8
|
Methylobacterium sp. FF17
Species-level Match
|
RISB2053 |
Atractomorpha sinensis
Order: Orthoptera
|
associated with cellulolytic enzymes
|
0.01% |
5.7
|
Providencia sp. R33
Species-level Match
|
RISB1574 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
0.00% |
5.7
|
Methylobacterium sp. AMS5
Species-level Match
|
RISB2053 |
Atractomorpha sinensis
Order: Orthoptera
|
associated with cellulolytic enzymes
|
0.00% |
5.7
|
Cedecea lapagei
Species-level Match
|
RISB1570 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
0.00% |
5.7
|
Blattabacterium cuenoti
Species-level Match
|
RISB0518 |
Cryptocercus punctulatus
Order: Blattodea
|
collaborative arginine biosynthesis
|
0.01% |
5.7
|
Providencia sp. R33
Species-level Match
|
RISB0984 |
Nasonia vitripennis
Order: Hymenoptera
|
may highly associated with diapause
|
0.00% |
5.7
|
Microbacterium sp. LWH13-1.2
Species-level Match
|
RISB2095 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.00% |
5.6
|
Chryseobacterium sp. MA9
Species-level Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.00% |
5.6
|
Salmonella enterica
Species-level Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
0.49% |
5.5
|
Blattabacterium cuenoti
Species-level Match
|
RISB0093 |
Blattella germanica
Order: Blattodea
|
obligate endosymbiont
|
0.01% |
5.4
|
Staphylococcus hominis
Species-level Match
|
RISB1881 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.00% |
5.3
|
Agrobacterium tumefaciens
Species-level Match
|
RISB0650 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.17% |
5.2
|
Cellulosimicrobium
|
RISB2182 |
Armadillidae
Order: Isopoda
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.04% |
5.0
|
Staphylococcus warneri
Species-level Match
|
RISB0513 |
Plutella xylostella
Order: Lepidoptera
|
None
|
0.02% |
5.0
|
Candidatus Steffania adelgidicola
Species-level Match
|
RISB2278 |
Adelges nordmannianae/piceae
Order: Hemiptera
|
None
|
0.02% |
5.0
|
Candidatus Karelsulcia muelleri
Species-level Match
|
RISB1591 |
Philaenus spumarius
Order: Hemiptera
|
None
|
0.02% |
5.0
|
Candidatus Moranella endobia
Species-level Match
|
RISB1588 |
Planococcus citri
Order: Hemiptera
|
None
|
0.01% |
5.0
|
Bosea sp. AS-1
Species-level Match
|
RISB1702 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.01% |
5.0
|
Candidatus Erwinia haradaeae
Species-level Match
|
RISB1632 |
Lachninae
Order: Hemiptera
|
None
|
0.01% |
5.0
|
Candidatus Palibaumannia cicadellinicola
Species-level Match
|
RISB1594 |
Graphocephala coccinea
Order: Hemiptera
|
None
|
0.01% |
5.0
|
Gilliamella
|
RISB0102 |
Apis mellifera
Order: Hymenoptera
|
Gilliamella apicola carries the gene for the desaturase FADS2, which is able to metabolize polyunsaturated fatty acids from pollen and synthesize endocannabinoid, a lipogenic neuroactive substance, thereby modulating reward learning and memory in honeybees.
|
0.01% |
5.0
|
Snodgrassella alvi
Species-level Match
|
RISB1947 |
Apis cerana
Order: Hymenoptera
|
None
|
0.00% |
5.0
|
Lactiplantibacillus plantarum
Species-level Match
|
RISB0608 |
Drosophila melanogaster
Order: Diptera
|
None
|
0.00% |
5.0
|
Cedecea lapagei
Species-level Match
|
RISB0504 |
Plutella xylostella
Order: Lepidoptera
|
None
|
0.00% |
5.0
|
Bosea sp. NBC_00550
Species-level Match
|
RISB1702 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.00% |
5.0
|
Erwinia amylovora
Species-level Match
|
RISB0403 |
Anaphes nitens
Order: Hymenoptera
|
None
|
0.00% |
5.0
|
Variovorax sp. RA8
Species-level Match
|
RISB1712 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.00% |
5.0
|
Flavobacterium johnsoniae
Species-level Match
|
RISB0659 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.00% |
5.0
|
Candidatus Regiella
|
RISB1370 |
Sitobion avenae
Order: Hemiptera
|
Regiella infection decreased the intrinsic rate of increase (rm) of aphids at 25 °C and 28 °C. However, at 31 °C, the effect of Regiella on the rm varied depending on the aphid genotype and density. Thus, the negative effects of this endosymbiont on its host were environmentally dependent.
|
0.00% |
5.0
|
Candidatus Cardinium
|
RISB0223 |
Bemisia tabaci
Order: Hemiptera
|
Cardinium could inhibit the defense response of the host plant and decrease the detoxification metabolism ability of the host whitefly, decrease the expression of detoxification metabolism genes, especially the uridine 5'-diphospho-glucuronyltransferase and P450 genes,
|
0.00% |
5.0
|
Candidatus Cardinium
|
RISB1439 |
Lutzomyia evansi
Order: Diptera
|
‘Candidatus Cardinium’ is a recently described bacterium from the Bacteroidetes group involved in diverse reproduction alterations of its arthropod hosts (including cytoplasmic incompatibility, parthenogenesis, and feminization) similar to Wolbachia
|
0.00% |
5.0
|
Treponema
|
RISB2377 |
termite
Order: Blattodea
|
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
|
0.01% |
4.9
|
Candidatus Regiella
|
RISB1819 |
Sitobion avenae
Order: Hemiptera
|
In R. insecticola-infected aphid lines, there were increases in plasticities for developmental times of first and second instar nymphs and for fecundity, showing novel functional roles of bacterial symbionts in plant-insect interactions.
|
0.00% |
4.7
|
Candidatus Regiella
|
RISB1363 |
Sitobion avenae
Order: Hemiptera
|
R. insecticola-infected aphids were more predated by the ladybird Hippodamia variegata irrespective of host plants and did not improve defences against coccinellid predators or metabolic rates on any host plants
|
0.00% |
4.2
|
Caballeronia
|
RISB0399 |
Riptortus pedestris
Order: Hemiptera
|
in laboratory conditions, C. jiangsuensis significantly enhanced the development, body size, and reproductive potentials of R. pedestris, compared to individuals with no symbiotic bacteria.
|
0.04% |
3.8
|
Xanthomonas
|
RISB0498 |
Xylocopa appendiculata
Order: Hymenoptera
|
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
|
0.01% |
3.8
|
Photorhabdus
|
RISB2532 |
Manduca sexta
Order: Lepidoptera
|
produces a small-molecule antibiotic (E)-1,3-dihydroxy-2-(isopropyl)-5-(2-phenylethenyl)benzene (ST) that also acts as an inhibitor of phenoloxidase (PO) in the insect host Manduca sexta.
|
0.01% |
3.8
|
Pectobacterium
|
RISB1889 |
Pseudococcus longispinus
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.02% |
3.4
|
Amycolatopsis
|
RISB0483 |
Trachymyrmex smithi
Order: Hymenoptera
|
inhibited the growth of Pseudonocardia symbionts under laboratory conditions. The novel analog nocamycin V from the strain was identified as the antibacterial compound
|
0.01% |
3.4
|
Symbiopectobacterium
|
RISB1889 |
Pseudococcus longispinus
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.00% |
3.3
|
Rhodococcus
|
RISB0775 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.04% |
3.3
|
Candidatus Blochmanniella
|
RISB2542 |
Camponotus
Order: Hymenoptera
|
Blochmannia provide essential amino acids to its host,Camponotus floridanus, and that it may also play a role in nitrogen recycling via its functional urease
|
0.01% |
3.2
|
Amycolatopsis
|
RISB0199 |
Trachymyrmex
Order: Hymenoptera
|
produce antibiotic EC0-0501 that has strong activity against ant-associated Actinobacteria and may also play a role in bacterial competition in this niche
|
0.01% |
3.1
|
Candidatus Blochmanniella
|
RISB1827 |
Camponotus floridanus
Order: Hymenoptera
|
a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission
|
0.01% |
3.1
|
Carnobacterium
|
RISB1378 |
Thitarodes pui
Order: Lepidoptera
|
promote the growth of Thitarodes larvae, elevate bacterial diversity, maintain a better balance of intestinal flora, and act as a probiotic in Thitarodes
|
0.00% |
3.1
|
Tsukamurella
|
RISB1531 |
Hoplothrips carpathicus
Order: Thysanoptera
|
This genus was identified as dominant in intensively feeding second-stage larvae and suggests a mechanism by which L2 larvae might process cellulose.
|
0.00% |
3.0
|
Caballeronia
|
RISB0276 |
Riptortus pedestris
Order: Hemiptera
|
Gut symbiont resulted in increase in the body size and weight of male adults;increased dispersal capacity of male adults especially for flight
|
0.04% |
2.9
|
Photorhabdus
|
RISB2573 |
Manduca sexta
Order: Lepidoptera
|
the bacteria are symbiotic with entomopathogenic nematodes but become pathogenic on release from the nematode into the insect blood system
|
0.01% |
2.8
|
Candidatus Blochmanniella
|
RISB2448 |
Camponotus floridanus
Order: Hymenoptera
|
nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling
|
0.01% |
2.8
|
Exiguobacterium
|
RISB0007 |
Phormia regina
Order: Diptera
|
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
0.00% |
2.7
|
Shewanella
|
RISB1924 |
Anopheles gambiae
Order: Diptera
|
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
|
0.05% |
2.6
|
Caballeronia
|
RISB0530 |
Anasa tristis
Order: Hemiptera
|
the symbiont Caballeronia prevents successful, long-term establishment of phytopathogenic Serratia marcescens in the squash bug
|
0.04% |
2.6
|
Bartonella
|
RISB1673 |
Apis mellifera
Order: Hymenoptera
|
a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream
|
0.02% |
2.6
|
Comamonas
|
RISB2021 |
Bactrocera dorsalis
Order: Diptera
|
This group in the immature stages may be helping the insects to cope with oxidative stress by supplementing available oxygen.
|
0.01% |
2.5
|
Carnobacterium
|
RISB1693 |
Plutella xylostella
Order: Lepidoptera
|
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
|
0.00% |
2.5
|
Yersinia
|
RISB0492 |
Cimex hemipterus
Order: Hemiptera
|
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
|
0.05% |
2.5
|
Nocardia
|
RISB0947 |
Acromyrmex
Order: Hymenoptera
|
Pseudonocardia in the Acromyrmex leaf-cutter ants as a protective partner against the entomopathogenic fungus Metarhizium
|
0.04% |
2.5
|
Pseudonocardia
|
RISB0947 |
Acromyrmex
Order: Hymenoptera
|
Pseudonocardia in the Acromyrmex leaf-cutter ants as a protective partner against the entomopathogenic fungus Metarhizium
|
0.00% |
2.4
|
Bacteroides
|
RISB0256 |
Leptocybe invasa
Order: Hymenoptera
|
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
|
0.03% |
2.3
|
Candidatus Cardinium
|
RISB2290 |
Sogatella furcifera
Order: Hemiptera
|
dual infection with Cardinium and Wolbachia induced strong cytoplasmic incompatibility (CI) in a single host
|
0.00% |
2.2
|
Bacteroides
|
RISB0090 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.03% |
2.2
|
Nocardia
|
RISB1218 |
Mycocepurus smithii
Order: Hymenoptera
|
produce secondary metabolites with antibiotic activity that protects the fungus garden against pathogens
|
0.04% |
2.1
|
Blautia
|
RISB0091 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.00% |
2.1
|
Pseudonocardia
|
RISB1218 |
Mycocepurus smithii
Order: Hymenoptera
|
produce secondary metabolites with antibiotic activity that protects the fungus garden against pathogens
|
0.00% |
2.1
|
Streptococcus
|
RISB2625 |
Galleria mellonella
Order: Lepidoptera
|
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
|
0.05% |
2.1
|
Rhodococcus
|
RISB0430 |
Rhodnius prolixus
Order: Hemiptera
|
Rhodnius prolixus harbouring R. rhodnii developed faster, had higher survival, and laid more eggs
|
0.04% |
2.0
|
Xanthomonas
|
RISB0217 |
Xylocopa appendiculata
Order: Hymenoptera
|
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
|
0.01% |
2.0
|
Micrococcus
|
RISB2276 |
Ostrinia nubilalis
Order: Lepidoptera
|
extreme cellulolytic enzymes, at extreme (pH 12) conditions, exhibited cellulolytic properties
|
0.00% |
1.9
|
Leclercia
|
RISB1757 |
Spodoptera frugiperda
Order: Lepidoptera
|
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
|
0.01% |
1.8
|
Streptococcus
|
RISB2624 |
Reticulitermes flavipes
Order: Blattodea
|
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
|
0.05% |
1.7
|
Carnobacterium
|
RISB1692 |
Plutella xylostella
Order: Lepidoptera
|
participate in the synthesis of host lacking amino acids histidine and threonine
|
0.00% |
1.6
|
Raoultella
|
RISB1672 |
Spodoptera frugiperda
Order: Lepidoptera
|
downregulated POX but upregulated trypsin PI in this plant species
|
0.01% |
1.3
|
Massilia
|
RISB2151 |
Osmia bicornis
Order: Hymenoptera
|
may be essential to support Osmia larvae in their nutrient uptake
|
0.00% |
1.3
|
Duganella
|
RISB2152 |
Osmia bicornis
Order: Hymenoptera
|
may be essential to support Osmia larvae in their nutrient uptake
|
0.00% |
1.3
|
Actinomyces
|
RISB1234 |
Hermetia illucens
Order: Diptera
|
provides the tools for degrading of a broad range of substrates
|
0.00% |
1.3
|
Streptococcus
|
RISB2604 |
Homona magnanima
Order: Lepidoptera
|
influence the growth of Bacillus thuringiensis in the larvae
|
0.05% |
1.3
|
Photorhabdus
|
RISB0532 |
Drosophila melanogaster
Order: Diptera
|
produces toxin complex (Tc) toxins as major virulence factors
|
0.01% |
1.2
|
Leclercia
|
RISB1758 |
Spodoptera frugiperda
Order: Lepidoptera
|
may influence the metabolization of pesticides in insects
|
0.01% |
1.2
|
Pectobacterium
|
RISB0798 |
Pseudoregma bambucicola
Order: Hemiptera
|
may help P. bambucicola feed on the stalks of bamboo
|
0.02% |
1.1
|
Paraclostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.00% |
1.1
|
Dickeya
|
RISB1086 |
Rhodnius prolixus
Order: Hemiptera
|
supply enzymatic biosynthesis of B-complex vitamins
|
0.03% |
1.1
|
Clavibacter
|
RISB0465 |
Trilophidia annulata
Order: Orthoptera
|
correlated with the hemicellulose digestibility
|
0.03% |
1.0
|
Brevibacterium
|
RISB0464 |
Acrida cinerea
Order: Orthoptera
|
correlated with the hemicellulose digestibility
|
0.00% |
0.9
|
Exiguobacterium
|
RISB0582 |
Aleurodicus rugioperculatus
Order: Hemiptera
|
may indirectly affect whitefly oviposition
|
0.00% |
0.8
|
Nocardioides
|
RISB1914 |
Hyles euphorbiae
Order: Lepidoptera
|
able to degrade alkaloids and/or latex
|
0.04% |
0.8
|
Gordonia
|
RISB1912 |
Hyles euphorbiae
Order: Lepidoptera
|
able to degrade alkaloids and/or latex
|
0.01% |
0.8
|
Curtobacterium
|
RISB1910 |
Hyles euphorbiae
Order: Lepidoptera
|
able to degrade alkaloids and/or latex
|
0.01% |
0.8
|
Brevibacterium
|
RISB2359 |
Bombyx mori
Order: Lepidoptera
|
producing lipase in a gut environment
|
0.00% |
0.8
|
Gilliamella
|
RISB0620 |
Spodoptera frugiperda
Order: Lepidoptera
|
degrade amygdalin
|
0.01% |
0.4
|
Priestia
|
RISB0839 |
Helicoverpa armigera
Order: Lepidoptera
|
producing amylase
|
0.01% |
0.4
|
Peribacillus
|
RISB1877 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.06% |
0.3
|
Sphingobium
|
RISB1880 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.01% |
0.3
|
Comamonas
|
RISB1875 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.01% |
0.3
|
Achromobacter
|
RISB1869 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.00% |
0.3
|
Alcaligenes
|
RISB1871 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.00% |
0.3
|
Halomonas
|
RISB1374 |
Bemisia tabaci
Order: Hemiptera
|
None
|
0.08% |
0.1
|
Cupriavidus
|
RISB0694 |
Alydus tomentosus
Order: Hemiptera
|
None
|
0.07% |
0.1
|
Yersinia
|
RISB0407 |
Anaphes nitens
Order: Hymenoptera
|
None
|
0.05% |
0.1
|
Metabacillus
|
RISB0902 |
Myzus persicae
Order: Hemiptera
|
None
|
0.05% |
0.1
|
Helicobacter
|
RISB0662 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.03% |
0.0
|
Pectobacterium
|
RISB1772 |
Muscidae
Order: Diptera
|
None
|
0.02% |
0.0
|
Legionella
|
RISB1687 |
Polyplax serrata
Order: Phthiraptera
|
None
|
0.02% |
0.0
|
Micromonospora
|
RISB2033 |
Palomena viridissima
Order: Hemiptera
|
None
|
0.01% |
0.0
|
Gilliamella
|
RISB1945 |
Apis cerana
Order: Hymenoptera
|
None
|
0.01% |
0.0
|
Treponema
|
RISB0169 |
Reticulitermes flaviceps
Order: Blattodea
|
None
|
0.01% |
0.0
|
Curtobacterium
|
RISB0900 |
Myzus persicae
Order: Hemiptera
|
None
|
0.01% |
0.0
|
Candidatus Profftia
|
RISB1664 |
Adelgidae
Order: Hemiptera
|
None
|
0.01% |
0.0
|
Vagococcus
|
RISB0042 |
Aldrichina grahami
Order: Diptera
|
None
|
0.01% |
0.0
|
Brevibacterium
|
RISB0897 |
Myzus persicae
Order: Hemiptera
|
None
|
0.00% |
0.0
|
Achromobacter
|
RISB0383 |
Aphis gossypii
Order: Hemiptera
|
None
|
0.00% |
0.0
|
Methylorubrum
|
RISB0903 |
Myzus persicae
Order: Hemiptera
|
None
|
0.00% |
0.0
|
Brevundimonas
|
RISB1703 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.00% |
0.0
|
Gibbsiella
|
RISB1320 |
Vespa mandarinia
Order: Hymenoptera
|
None
|
0.00% |
0.0
|
Lonsdalea
|
RISB1321 |
Vespa mandarinia
Order: Hymenoptera
|
None
|
0.00% |
0.0
|
Ralstonia
|
RISB0243 |
Spodoptera frugiperda
Order: Lepidoptera
|
None
|
0.00% |
0.0
|
Paraburkholderia
|
RISB0125 |
Physopelta gutta
Order: Hemiptera
|
None
|
0.00% |
0.0
|
Neisseria
|
RISB0512 |
Plutella xylostella
Order: Lepidoptera
|
None
|
0.00% |
0.0
|
Candidatus Arthromitus
|
RISB2613 |
Multiple species
Order: None
|
None
|
0.00% |
0.0
|
Selenomonas
|
RISB1305 |
Aphis gossypii
Order: Hemiptera
|
None
|
0.00% |
0.0
|
Chroococcidiopsis
|
RISB0487 |
Ceratitis capitata
Order: Diptera
|
None
|
0.00% |
0.0
|
Myroides
|
RISB0626 |
Musca altica
Order: Diptera
|
None
|
0.00% |
0.0
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.