SRR27874675 - Silvanoprus fagi
Basic Information
Run: SRR27874675
Assay Type: WGS
Bioproject: PRJNA1072544
Biosample: SAMN39749795
Bytes: 465855702
Center Name: MAX PLANCK INSTITUTE FOR CHEMICAL ECOLOGY
Sequencing Information
Instrument: NextSeq 2000
Library Layout: PAIRED
Library Selection: RANDOM
Platform: ILLUMINA
Geographic Information
Country: Germany
Continent: Europe
Location Name: Germany
Latitude/Longitude: 48.030139 N 11.350212 E
Sample Information
Host: Silvanoprus fagi
Isolation: -
Biosample Model: Metagenome or environmental
Collection Date: 2015
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
3.78% |
23.6
|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB2224 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
3.78% |
22.1
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
4.17% |
21.9
|
Bacillus cereus
Species-level Match
Host Order Match
|
RISB1056 |
Oryctes rhinoceros
Order: Coleoptera
|
provide symbiotic digestive functions to Oryctes
|
4.54% |
20.5
|
Bacillus cereus
Species-level Match
Host Order Match
|
RISB1778 |
Lissorhoptrus oryzophilus
Order: Coleoptera
|
might be promising paratransgenesis candidates
|
4.54% |
20.5
|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB0815 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-15 oxidation pathway
|
3.78% |
20.2
|
Streptomyces sp. T12
Species-level Match
Host Order Match
|
RISB0777 |
Copris tripartitus
Order: Coleoptera
|
contribute brood ball hygiene by inhibiting fungal parasites in the environment
|
2.47% |
19.1
|
Sphingobacterium sp. G1-14
Species-level Match
Host Order Match
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.29% |
18.6
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB0139 |
Tenebrio molitor
Order: Coleoptera
|
correlated with polyvinyl chloride PVC degradation
|
2.57% |
18.6
|
Streptomyces sp. WAC00303
Species-level Match
Host Order Match
|
RISB0777 |
Copris tripartitus
Order: Coleoptera
|
contribute brood ball hygiene by inhibiting fungal parasites in the environment
|
0.70% |
17.3
|
Staphylococcus
Host Order Match
|
RISB0945 |
Callosobruchus maculatus
Order: Coleoptera
|
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
|
1.62% |
16.6
|
Vibrio
Host Order Match
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
4.95% |
16.3
|
Clostridium
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
11.02% |
15.2
|
Wolbachia
Host Order Match
|
RISB1452 |
Octodonta nipae
Order: Coleoptera
|
Wolbachia harbored dominantly in a female than the male adult, while, no significant differences were observed between male and female body parts and tissues
|
1.61% |
14.8
|
Bacillus cereus
Species-level Match
|
RISB2161 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
4.54% |
14.5
|
Wolbachia
Host Order Match
|
RISB2107 |
Sitophilus zeamais
Order: Coleoptera
|
Wolbachia directly favored weevil fertility and exhibited only mild indirect effects, usually enhancing the SZPE effect
|
1.61% |
14.0
|
Staphylococcus
Host Order Match
|
RISB0946 |
Callosobruchus maculatus
Order: Coleoptera
|
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine
|
1.62% |
14.0
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
4.17% |
13.5
|
Wolbachia
Host Order Match
|
RISB1282 |
Ips sp.
Order: Coleoptera
|
inducing cytoplasmic incompatibility, resulting in reproductive distortions and hence
|
1.61% |
13.3
|
Microbacterium
Host Order Match
|
RISB2275 |
Leptinotarsa decemlineata
Order: Coleoptera
|
extreme cellulolytic enzymes, at extreme (pH 13) conditions, exhibited cellulolytic properties
|
1.35% |
13.2
|
Bacteroides
Host Order Match
|
RISB1183 |
Oryzaephilus surinamensis
Order: Coleoptera
|
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
|
0.27% |
12.3
|
Clostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
11.02% |
12.1
|
Paenibacillus
Host Order Match
|
RISB0813 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-9 oxidation pathway
|
0.49% |
11.9
|
Staphylococcus
Host Order Match
|
RISB1070 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
1.62% |
11.8
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1122 |
Bombyx mori
Order: Lepidoptera
|
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
|
2.57% |
11.6
|
Streptomyces sp. T12
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
2.47% |
11.4
|
Buchnera aphidicola
Species-level Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
1.28% |
11.3
|
Buchnera aphidicola
Species-level Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
1.28% |
11.0
|
Clostridium
|
RISB1959 |
Pyrrhocoridae
Order: Hemiptera
|
None
|
11.02% |
11.0
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1227 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
2.57% |
10.3
|
Buchnera aphidicola
Species-level Match
|
RISB0685 |
Acyrthosiphon pisum
Order: Hemiptera
|
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
|
1.28% |
10.1
|
Escherichia coli
Species-level Match
|
RISB2120 |
Galleria mellonella
Order: Lepidoptera
|
mediate trans-generational immune priming
|
4.17% |
10.0
|
Mammaliicoccus sciuri
Species-level Match
|
RISB0075 |
Bombyx mori
Order: Lepidoptera
|
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
|
0.24% |
9.2
|
Burkholderia sp. PAMC 26561
Species-level Match
|
RISB1501 |
Riptortus pedestris
Order: Hemiptera
|
Susceptible insects became resistant via acquisition of pesticide-degrading symbionts from pesticide-sprayed soil. This association could occur only after two-time-spraying on soil
|
0.30% |
8.9
|
Burkholderia sp. PAMC 28687
Species-level Match
|
RISB1501 |
Riptortus pedestris
Order: Hemiptera
|
Susceptible insects became resistant via acquisition of pesticide-degrading symbionts from pesticide-sprayed soil. This association could occur only after two-time-spraying on soil
|
0.27% |
8.9
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1693 |
Plutella xylostella
Order: Lepidoptera
|
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
|
1.02% |
8.5
|
Burkholderia sp. PAMC 26561
Species-level Match
|
RISB2070 |
Riptortus pedestris
Order: Hemiptera
|
Burkholderia sp. did not affect the development of the host insect but the first oviposition time was in approximately 60% compared with a control group
|
0.30% |
8.3
|
Blattabacterium cuenoti
Species-level Match
|
RISB0133 |
Panesthiinae
Order: Blattodea
|
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
|
0.27% |
8.2
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1692 |
Plutella xylostella
Order: Lepidoptera
|
participate in the synthesis of host lacking amino acids histidine and threonine
|
1.02% |
7.6
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1691 |
Plutella xylostella
Order: Lepidoptera
|
activity of cellulose and hemicellulose
|
1.02% |
6.8
|
Microbacterium
|
RISB0084 |
Osmia cornifrons
Order: Hymenoptera
|
In O. cornifrons larvae, Microbacterium could contribute to the balance and resiliency of the gut microbiome under stress conditions. In addition, Rhodococcus was found in O. cornifrons larvae and is known for its detoxification capabilities
|
1.35% |
6.2
|
Blattabacterium cuenoti
Species-level Match
|
RISB0518 |
Cryptocercus punctulatus
Order: Blattodea
|
collaborative arginine biosynthesis
|
0.27% |
6.0
|
Blattabacterium cuenoti
Species-level Match
|
RISB0093 |
Blattella germanica
Order: Blattodea
|
obligate endosymbiont
|
0.27% |
5.7
|
Paenibacillus
|
RISB2195 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.49% |
5.5
|
Candidatus Erwinia haradaeae
Species-level Match
|
RISB1632 |
Lachninae
Order: Hemiptera
|
None
|
0.26% |
5.3
|
Xanthomonas
|
RISB0498 |
Xylocopa appendiculata
Order: Hymenoptera
|
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
|
0.68% |
4.4
|
Yersinia
|
RISB0492 |
Cimex hemipterus
Order: Hemiptera
|
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
|
1.73% |
4.2
|
Paenibacillus
|
RISB0774 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.49% |
3.8
|
Pectobacterium
|
RISB1889 |
Pseudococcus longispinus
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.26% |
3.6
|
Candidatus Blochmanniella
|
RISB2542 |
Camponotus
Order: Hymenoptera
|
Blochmannia provide essential amino acids to its host,Camponotus floridanus, and that it may also play a role in nitrogen recycling via its functional urease
|
0.43% |
3.6
|
Candidatus Blochmanniella
|
RISB1827 |
Camponotus floridanus
Order: Hymenoptera
|
a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission
|
0.43% |
3.5
|
Microbacterium
|
RISB2274 |
Ostrinia nubilalis
Order: Lepidoptera
|
extreme cellulolytic enzymes, at extreme (pH 13) conditions, exhibited cellulolytic properties
|
1.35% |
3.2
|
Candidatus Blochmanniella
|
RISB2448 |
Camponotus floridanus
Order: Hymenoptera
|
nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling
|
0.43% |
3.2
|
Sphingomonas
|
RISB0420 |
Aphis gossypii
Order: Hemiptera
|
Sphingomonas could mediate A. gossypii resistance to imidacloprid by hydroxylation and nitroreduction
|
0.67% |
2.7
|
Xanthomonas
|
RISB0217 |
Xylocopa appendiculata
Order: Hymenoptera
|
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
|
0.68% |
2.6
|
Bacteroides
|
RISB0256 |
Leptocybe invasa
Order: Hymenoptera
|
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
|
0.27% |
2.6
|
Streptococcus
|
RISB2625 |
Galleria mellonella
Order: Lepidoptera
|
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
|
0.52% |
2.5
|
Sphingomonas
|
RISB1307 |
Aphis gossypii
Order: Hemiptera
|
have been previously described in associations with phloem-feeding insects, in low abundances
|
0.67% |
2.5
|
Bacteroides
|
RISB0090 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.27% |
2.4
|
Xenorhabdus
|
RISB1372 |
Spodoptera frugiperda
Order: Lepidoptera
|
the products of the symbiont gene cluster inhibit Spodoptera frugiperda phenoloxidase activity
|
0.44% |
2.3
|
Sphingomonas
|
RISB0134 |
Spodoptera frugiperda
Order: Lepidoptera
|
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
|
0.67% |
2.3
|
Streptococcus
|
RISB2624 |
Reticulitermes flavipes
Order: Blattodea
|
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
|
0.52% |
2.2
|
Xenorhabdus
|
RISB2270 |
Acyrthosiphon pisum
Order: Hemiptera
|
have the gene PIN1 encoding the protease inhibitor protein against aphids
|
0.44% |
1.9
|
Yersinia
|
RISB0407 |
Anaphes nitens
Order: Hymenoptera
|
None
|
1.73% |
1.7
|
Streptococcus
|
RISB2604 |
Homona magnanima
Order: Lepidoptera
|
influence the growth of Bacillus thuringiensis in the larvae
|
0.52% |
1.7
|
Priestia
|
RISB0839 |
Helicoverpa armigera
Order: Lepidoptera
|
producing amylase
|
1.20% |
1.5
|
Methylorubrum
|
RISB0903 |
Myzus persicae
Order: Hemiptera
|
None
|
1.42% |
1.4
|
Pectobacterium
|
RISB0798 |
Pseudoregma bambucicola
Order: Hemiptera
|
may help P. bambucicola feed on the stalks of bamboo
|
0.26% |
1.3
|
Paraclostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.19% |
1.3
|
Cupriavidus
|
RISB0694 |
Alydus tomentosus
Order: Hemiptera
|
None
|
1.15% |
1.2
|
Chryseobacterium
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.36% |
0.9
|
Chryseobacterium
|
RISB1874 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.36% |
0.6
|
Flavobacterium
|
RISB0659 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.64% |
0.6
|
Peribacillus
|
RISB1877 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.31% |
0.6
|
Chryseobacterium
|
RISB0015 |
Aedes aegypti
Order: Diptera
|
None
|
0.36% |
0.4
|
Pectobacterium
|
RISB1772 |
Muscidae
Order: Diptera
|
None
|
0.26% |
0.3
|
Legionella
|
RISB1687 |
Polyplax serrata
Order: Phthiraptera
|
None
|
0.20% |
0.2
|
Helicobacter
|
RISB0662 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.16% |
0.2
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.