SRR27812168 - Dasytes seminudus
Basic Information
Run: SRR27812168
Assay Type: WGS
Bioproject: PRJNA1068458
Biosample: SAMN39671342
Bytes: 751584766
Center Name: MAX PLANCK INSTITUTE FOR CHEMICAL ECOLOGY
Sequencing Information
Instrument: Illumina HiSeq 3000
Library Layout: PAIRED
Library Selection: RANDOM
Platform: ILLUMINA
Geographic Information
Country: USA
Continent: North America
Location Name: USA
Latitude/Longitude: 34.73446 N 117.84770 W
Sample Information
Host: Dasytes seminudus
Isolation: -
Biosample Model: Metagenome or environmental
Collection Date: 2021
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
1.76% |
21.6
|
Klebsiella pneumoniae
Species-level Match
Host Order Match
|
RISB1153 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
6.19% |
21.6
|
Bacillus cereus
Species-level Match
Host Order Match
|
RISB1056 |
Oryctes rhinoceros
Order: Coleoptera
|
provide symbiotic digestive functions to Oryctes
|
5.35% |
21.3
|
Bacillus cereus
Species-level Match
Host Order Match
|
RISB1778 |
Lissorhoptrus oryzophilus
Order: Coleoptera
|
might be promising paratransgenesis candidates
|
5.35% |
21.3
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
2.94% |
20.7
|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB2224 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
1.76% |
20.1
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB0967 |
Oulema melanopus
Order: Coleoptera
|
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
|
0.76% |
19.3
|
Sphingobacterium sp. ML3W
Species-level Match
Host Order Match
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.28% |
18.6
|
Streptomyces sp. WAC00303
Species-level Match
Host Order Match
|
RISB0777 |
Copris tripartitus
Order: Coleoptera
|
contribute brood ball hygiene by inhibiting fungal parasites in the environment
|
2.01% |
18.6
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB0497 |
Cryptolestes ferrugineus
Order: Coleoptera
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
|
0.73% |
18.3
|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB0815 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-15 oxidation pathway
|
1.76% |
18.2
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB2042 |
Harpalus pensylvanicus
Order: Coleoptera
|
E. faecalis facilitate seed consumption by H. pensylvanicus, possibly by contributing digestive enzymes to their host
|
0.73% |
18.1
|
Bacillus sp. KH172YL63
Species-level Match
Host Order Match
|
RISB1645 |
Osphranteria coerulescens
Order: Coleoptera
|
The isolate has cellulolytic activity and can hydrolyze CMC, avicel, cellulose and sawdust with broad temperature and pH stability
|
0.21% |
17.8
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB0139 |
Tenebrio molitor
Order: Coleoptera
|
correlated with polyvinyl chloride PVC degradation
|
1.78% |
17.8
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB1430 |
Rhynchophorus ferrugineus
Order: Coleoptera
|
promote the development and body mass gain of RPW larvae by improving their nutrition metabolism
|
0.76% |
17.7
|
Streptomyces sp. T12
Species-level Match
Host Order Match
|
RISB0777 |
Copris tripartitus
Order: Coleoptera
|
contribute brood ball hygiene by inhibiting fungal parasites in the environment
|
0.98% |
17.6
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB0374 |
Tribolium castaneum
Order: Coleoptera
|
modulates host phosphine resistance by interfering with the redox system
|
0.73% |
17.2
|
Paenibacillus sp. PAMC21692
Species-level Match
Host Order Match
|
RISB0813 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-9 oxidation pathway
|
0.70% |
17.1
|
Streptomyces sp. NBC_00820
Species-level Match
Host Order Match
|
RISB0777 |
Copris tripartitus
Order: Coleoptera
|
contribute brood ball hygiene by inhibiting fungal parasites in the environment
|
0.30% |
16.9
|
Klebsiella pneumoniae
Species-level Match
|
RISB2185 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
6.19% |
16.2
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB1065 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.76% |
16.0
|
Burkholderia
Host Order Match
|
RISB1172 |
Lagria villosa
Order: Coleoptera
|
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
|
0.72% |
15.7
|
Staphylococcus epidermidis
Species-level Match
Host Order Match
|
RISB1070 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.32% |
15.5
|
Burkholderia
Host Order Match
|
RISB1729 |
Lagria hirta
Order: Coleoptera
|
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
|
0.72% |
15.0
|
Burkholderia
Host Order Match
|
RISB1836 |
Dendroctonus valens
Order: Coleoptera
|
It can trongly degrade naringenin, and pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and facilitate naringenin biodegradation by the microbiotas.
|
0.72% |
14.7
|
Spiroplasma
Host Order Match
|
RISB0343 |
Harmonia axyridis
Order: Coleoptera
|
female ladybirds co-infected with Hesperomyces harmoniae and Spiroplasma had a significantly lower fecundity and hatchability compared to females with only one or no symbiont
|
0.60% |
14.1
|
Wolbachia
Host Order Match
|
RISB1452 |
Octodonta nipae
Order: Coleoptera
|
Wolbachia harbored dominantly in a female than the male adult, while, no significant differences were observed between male and female body parts and tissues
|
0.92% |
14.1
|
Proteus
Host Order Match
|
RISB0001 |
Leptinotarsa decemlineata
Order: Coleoptera
|
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
|
0.78% |
13.5
|
Wolbachia
Host Order Match
|
RISB2107 |
Sitophilus zeamais
Order: Coleoptera
|
Wolbachia directly favored weevil fertility and exhibited only mild indirect effects, usually enhancing the SZPE effect
|
0.92% |
13.3
|
Buchnera aphidicola
Species-level Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
3.02% |
13.0
|
Bacteroides
Host Order Match
|
RISB1183 |
Oryzaephilus surinamensis
Order: Coleoptera
|
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
|
0.98% |
13.0
|
Spiroplasma
Host Order Match
|
RISB1483 |
Brachinus elongatulus
Order: Coleoptera
|
may manipulate host reproduction (e.g., cause male-killing) or provide resistance to nematodes and/or parasitoid wasps
|
0.60% |
13.0
|
Vibrio
Host Order Match
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
1.50% |
12.8
|
Buchnera aphidicola
Species-level Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
3.02% |
12.8
|
Wolbachia
Host Order Match
|
RISB1282 |
Ips sp.
Order: Coleoptera
|
inducing cytoplasmic incompatibility, resulting in reproductive distortions and hence
|
0.92% |
12.6
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
2.94% |
12.3
|
Klebsiella pneumoniae
Species-level Match
|
RISB2459 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
6.19% |
12.2
|
Rickettsia
Host Order Match
|
RISB1279 |
Ips sp.
Order: Coleoptera
|
inducing cytoplasmic incompatibility, resulting in reproductive distortions and hence
|
0.43% |
12.1
|
Rickettsia
Host Order Match
|
RISB0970 |
Oulema melanopus
Order: Coleoptera
|
may be associated with insect reproduction and maturation of their sexual organs
|
0.43% |
12.0
|
Rickettsia
Host Order Match
|
RISB1954 |
Sitona obsoletus
Order: Coleoptera
|
potential defensive properties against he parasitoid Microctonus aethiopoides
|
0.43% |
12.0
|
Buchnera aphidicola
Species-level Match
|
RISB0685 |
Acyrthosiphon pisum
Order: Hemiptera
|
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
|
3.02% |
11.8
|
Spiroplasma
Host Order Match
|
RISB0250 |
Tenebrio molitor
Order: Coleoptera
|
associated with PE biodegradation
|
0.60% |
11.3
|
Mycobacterium
Host Order Match
|
RISB1156 |
Nicrophorus concolor
Order: Coleoptera
|
produces Antimicrobial compounds
|
0.37% |
11.0
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1122 |
Bombyx mori
Order: Lepidoptera
|
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
|
1.78% |
10.8
|
Micromonospora
Host Order Match
|
RISB2034 |
Harpalus sinicus
Order: Coleoptera
|
None
|
0.32% |
10.3
|
Paenibacillus polymyxa
Species-level Match
|
RISB2195 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.29% |
10.3
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1227 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
1.78% |
9.5
|
Clostridium sp. DL-VIII
Species-level Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.25% |
9.5
|
Clostridium sp. 'deep sea'
Species-level Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.14% |
9.4
|
Mammaliicoccus sciuri
Species-level Match
|
RISB0075 |
Bombyx mori
Order: Lepidoptera
|
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
|
0.29% |
9.3
|
Acinetobacter pittii
Species-level Match
|
RISB1977 |
Blattella germanica
Order: Blattodea
|
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
|
0.37% |
9.2
|
Staphylococcus xylosus
Species-level Match
|
RISB2497 |
Anticarsia gemmatalis
Order: Lepidoptera
|
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
|
0.15% |
9.1
|
Paenibacillus sp. PAMC21692
Species-level Match
|
RISB0774 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.70% |
9.0
|
Escherichia coli
Species-level Match
|
RISB2120 |
Galleria mellonella
Order: Lepidoptera
|
mediate trans-generational immune priming
|
2.94% |
8.8
|
Blattabacterium cuenoti
Species-level Match
|
RISB0133 |
Panesthiinae
Order: Blattodea
|
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
|
0.67% |
8.6
|
Staphylococcus xylosus
Species-level Match
|
RISB2247 |
Anticarsia gemmatalis
Order: Lepidoptera
|
mitigation of the negative effects of proteinase inhibitors produced by the host plant
|
0.15% |
6.9
|
Blattabacterium cuenoti
Species-level Match
|
RISB0518 |
Cryptocercus punctulatus
Order: Blattodea
|
collaborative arginine biosynthesis
|
0.67% |
6.4
|
Salmonella enterica
Species-level Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
1.20% |
6.2
|
Blattabacterium cuenoti
Species-level Match
|
RISB0093 |
Blattella germanica
Order: Blattodea
|
obligate endosymbiont
|
0.67% |
6.1
|
Microbacterium sp. 1S1
Species-level Match
|
RISB2095 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.18% |
5.7
|
Candidatus Erwinia haradaeae
Species-level Match
|
RISB1632 |
Lachninae
Order: Hemiptera
|
None
|
0.49% |
5.5
|
Gilliamella
|
RISB0102 |
Apis mellifera
Order: Hymenoptera
|
Gilliamella apicola carries the gene for the desaturase FADS2, which is able to metabolize polyunsaturated fatty acids from pollen and synthesize endocannabinoid, a lipogenic neuroactive substance, thereby modulating reward learning and memory in honeybees.
|
0.36% |
5.4
|
Lactobacillus
|
RISB1866 |
Drosophila melanogaster
Order: Diptera
|
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
|
0.30% |
5.3
|
Candidatus Palibaumannia cicadellinicola
Species-level Match
|
RISB1594 |
Graphocephala coccinea
Order: Hemiptera
|
None
|
0.27% |
5.3
|
Xanthomonas
|
RISB0498 |
Xylocopa appendiculata
Order: Hymenoptera
|
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
|
0.20% |
4.0
|
Lactobacillus
|
RISB0292 |
Lymantria dispar asiatica
Order: Lepidoptera
|
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
|
0.30% |
3.7
|
Bacteroides
|
RISB0256 |
Leptocybe invasa
Order: Hymenoptera
|
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
|
0.98% |
3.3
|
Lactobacillus
|
RISB0715 |
Spodoptera frugiperda
Order: Lepidoptera
|
Have the function of nutrient absorption, energy metabolism, the plant’s secondary metabolites degradation, insect immunity regulation, and so on
|
0.30% |
3.2
|
Bacteroides
|
RISB0090 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.98% |
3.1
|
Yersinia
|
RISB0492 |
Cimex hemipterus
Order: Hemiptera
|
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
|
0.51% |
2.9
|
Proteus
|
RISB2315 |
Aedes aegypti
Order: Diptera
|
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
|
0.78% |
2.9
|
Streptococcus
|
RISB2625 |
Galleria mellonella
Order: Lepidoptera
|
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
|
0.87% |
2.9
|
Nocardia
|
RISB0947 |
Acromyrmex
Order: Hymenoptera
|
Pseudonocardia in the Acromyrmex leaf-cutter ants as a protective partner against the entomopathogenic fungus Metarhizium
|
0.29% |
2.7
|
Cupriavidus
|
RISB0694 |
Alydus tomentosus
Order: Hemiptera
|
None
|
2.60% |
2.6
|
Streptococcus
|
RISB2624 |
Reticulitermes flavipes
Order: Blattodea
|
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
|
0.87% |
2.5
|
Nocardia
|
RISB1218 |
Mycocepurus smithii
Order: Hymenoptera
|
produce secondary metabolites with antibiotic activity that protects the fungus garden against pathogens
|
0.29% |
2.4
|
Xanthomonas
|
RISB0217 |
Xylocopa appendiculata
Order: Hymenoptera
|
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
|
0.20% |
2.1
|
Streptococcus
|
RISB2604 |
Homona magnanima
Order: Lepidoptera
|
influence the growth of Bacillus thuringiensis in the larvae
|
0.87% |
2.1
|
Proteus
|
RISB2460 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
0.78% |
1.8
|
Paraclostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.42% |
1.5
|
Flavobacterium
|
RISB0659 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
1.29% |
1.3
|
Chryseobacterium
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.66% |
1.2
|
Peribacillus
|
RISB1877 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.80% |
1.1
|
Chryseobacterium
|
RISB1874 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.66% |
0.9
|
Metabacillus
|
RISB0902 |
Myzus persicae
Order: Hemiptera
|
None
|
0.89% |
0.9
|
Priestia
|
RISB0839 |
Helicoverpa armigera
Order: Lepidoptera
|
producing amylase
|
0.47% |
0.8
|
Gilliamella
|
RISB0620 |
Spodoptera frugiperda
Order: Lepidoptera
|
degrade amygdalin
|
0.36% |
0.7
|
Chryseobacterium
|
RISB0015 |
Aedes aegypti
Order: Diptera
|
None
|
0.66% |
0.7
|
Yersinia
|
RISB0407 |
Anaphes nitens
Order: Hymenoptera
|
None
|
0.51% |
0.5
|
Helicobacter
|
RISB0662 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.37% |
0.4
|
Gilliamella
|
RISB1945 |
Apis cerana
Order: Hymenoptera
|
None
|
0.36% |
0.4
|
Micromonospora
|
RISB2033 |
Palomena viridissima
Order: Hemiptera
|
None
|
0.32% |
0.3
|
Legionella
|
RISB1687 |
Polyplax serrata
Order: Phthiraptera
|
None
|
0.17% |
0.2
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.