SRR27811909 - Pactopus hornii
Basic Information
Run: SRR27811909
Assay Type: WGS
Bioproject: PRJNA1062330
Biosample: SAMN39691714
Bytes: 1720869786
Center Name: MAX PLANCK INSTITUTE FOR CHEMICAL ECOLOGY
Sequencing Information
Instrument: Illumina HiSeq 3000
Library Layout: PAIRED
Library Selection: RANDOM
Platform: ILLUMINA
Geographic Information
Country: Canada
Continent: North America
Location Name: Canada
Latitude/Longitude: 49.301 N 123.14 W
Sample Information
Host: Pactopus hornii
Isolation: -
Biosample Model: Metagenome or environmental
Collection Date: 2014
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.37% |
20.2
|
Pantoea sp. Nvir
Species-level Match
Host Order Match
|
RISB0736 |
Psylliodes chrysocephala
Order: Coleoptera
|
Laboratory-reared and field-collected P. chrysocephala all contained three core genera Pantoea, Acinetobacter and Pseudomonas, and reintroduction of Pantoea sp. Pc8 in antibiotic-fed beetles restored isothiocyanate degradation ability in vivo (by 16S rRNA gene sequencing and LC-MS)
|
0.02% |
20.0
|
Staphylococcus gallinarum
Species-level Match
Host Order Match
|
RISB0945 |
Callosobruchus maculatus
Order: Coleoptera
|
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
|
0.02% |
20.0
|
Acinetobacter sp. PK01
Species-level Match
Host Order Match
|
RISB0730 |
Curculio chinensis
Order: Coleoptera
|
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
|
0.05% |
19.7
|
Acinetobacter sp. Marseille-Q1620
Species-level Match
Host Order Match
|
RISB0730 |
Curculio chinensis
Order: Coleoptera
|
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
|
0.02% |
19.7
|
Acinetobacter sp. TGL-Y2
Species-level Match
Host Order Match
|
RISB0730 |
Curculio chinensis
Order: Coleoptera
|
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
|
0.01% |
19.7
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
1.01% |
18.7
|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB2224 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.37% |
18.7
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB0967 |
Oulema melanopus
Order: Coleoptera
|
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
|
0.07% |
18.6
|
Sphingobacterium sp. SRCM116780
Species-level Match
Host Order Match
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.09% |
18.4
|
Sphingobacterium sp. UDSM-2020
Species-level Match
Host Order Match
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.02% |
18.4
|
Sphingobacterium sp. DR205
Species-level Match
Host Order Match
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.01% |
18.4
|
Klebsiella oxytoca
Species-level Match
Host Order Match
|
RISB1506 |
Cleonus trivittatus
Order: Coleoptera
|
Antibiotic-treated larvae suffered growth retardation on a diet containing plant extract or swainsonine. Gut bacteria showed toxin-degradation activities in vitro
|
0.01% |
18.3
|
Citrobacter freundii
Species-level Match
Host Order Match
|
RISB0517 |
Leptinotarsa decemlineata
Order: Coleoptera
|
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
|
0.07% |
18.0
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB1867 |
Costelytra zealandica
Order: Coleoptera
|
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
|
0.04% |
17.9
|
Citrobacter freundii
Species-level Match
Host Order Match
|
RISB0127 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
0.07% |
17.8
|
Proteus vulgaris
Species-level Match
Host Order Match
|
RISB0001 |
Leptinotarsa decemlineata
Order: Coleoptera
|
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
|
0.04% |
17.7
|
Bacillus cereus
Species-level Match
Host Order Match
|
RISB1056 |
Oryctes rhinoceros
Order: Coleoptera
|
provide symbiotic digestive functions to Oryctes
|
1.73% |
17.7
|
Bacillus subtilis
Species-level Match
Host Order Match
|
RISB0494 |
Sitophilus oryzae
Order: Coleoptera
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
|
0.10% |
17.7
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB0497 |
Cryptolestes ferrugineus
Order: Coleoptera
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
|
0.09% |
17.7
|
Bacillus cereus
Species-level Match
Host Order Match
|
RISB1778 |
Lissorhoptrus oryzophilus
Order: Coleoptera
|
might be promising paratransgenesis candidates
|
1.73% |
17.7
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB2042 |
Harpalus pensylvanicus
Order: Coleoptera
|
E. faecalis facilitate seed consumption by H. pensylvanicus, possibly by contributing digestive enzymes to their host
|
0.09% |
17.4
|
Staphylococcus gallinarum
Species-level Match
Host Order Match
|
RISB0946 |
Callosobruchus maculatus
Order: Coleoptera
|
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine
|
0.02% |
17.4
|
Serratia marcescens
Species-level Match
Host Order Match
|
RISB1295 |
Nicrophorus vespilloides
Order: Coleoptera
|
producing antibacterial compound Serrawettin W2, which has antibacterial and nematode-inhibiting effects
|
0.04% |
17.1
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB1430 |
Rhynchophorus ferrugineus
Order: Coleoptera
|
promote the development and body mass gain of RPW larvae by improving their nutrition metabolism
|
0.07% |
17.0
|
Streptomyces sp. WAC00303
Species-level Match
Host Order Match
|
RISB0777 |
Copris tripartitus
Order: Coleoptera
|
contribute brood ball hygiene by inhibiting fungal parasites in the environment
|
0.32% |
16.9
|
Paludibacter propionicigenes
Species-level Match
Host Order Match
|
RISB2055 |
Odontotaenius disjunctus
Order: Coleoptera
|
microbial fixation of nitrogen that is important for this beetle to subsist on woody biomass
|
0.01% |
16.9
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB1548 |
Costelytra zealandica
Order: Coleoptera
|
symbionts residing in the colleterial glands produce phenol 1 as the female sex pheromone
|
0.04% |
16.8
|
Serratia marcescens
Species-level Match
Host Order Match
|
RISB0365 |
Pagiophloeus tsushimanus
Order: Coleoptera
|
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
|
0.04% |
16.8
|
Pseudomonas aeruginosa
Species-level Match
Host Order Match
|
RISB0364 |
Pagiophloeus tsushimanus
Order: Coleoptera
|
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
|
0.03% |
16.8
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB1868 |
Costelytra zealandica
Order: Coleoptera
|
produces phenol as the sex pheromone of the host from tyrosine in the colleterial gland
|
0.04% |
16.8
|
Streptomyces sp. T12
Species-level Match
Host Order Match
|
RISB0777 |
Copris tripartitus
Order: Coleoptera
|
contribute brood ball hygiene by inhibiting fungal parasites in the environment
|
0.14% |
16.7
|
Streptomyces sp. SUK 48
Species-level Match
Host Order Match
|
RISB0777 |
Copris tripartitus
Order: Coleoptera
|
contribute brood ball hygiene by inhibiting fungal parasites in the environment
|
0.13% |
16.7
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB0374 |
Tribolium castaneum
Order: Coleoptera
|
modulates host phosphine resistance by interfering with the redox system
|
0.09% |
16.5
|
Paenibacillus sp. FSL P2-0089
Species-level Match
Host Order Match
|
RISB0813 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-9 oxidation pathway
|
0.10% |
16.5
|
Pantoea sp. Nvir
Species-level Match
Host Order Match
|
RISB0814 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-14 oxidation pathway
|
0.02% |
16.4
|
Paenibacillus sp. KACC 21273
Species-level Match
Host Order Match
|
RISB0813 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-9 oxidation pathway
|
0.03% |
16.4
|
Serratia marcescens
Species-level Match
Host Order Match
|
RISB1158 |
Nicrophorus vespilloides
Order: Coleoptera
|
produces an antibacterial cyclic lipopeptide called serrawettin W2
|
0.04% |
16.4
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB0139 |
Tenebrio molitor
Order: Coleoptera
|
correlated with polyvinyl chloride PVC degradation
|
0.10% |
16.1
|
Klebsiella pneumoniae
Species-level Match
Host Order Match
|
RISB1153 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.56% |
15.9
|
Paludibacter propionicigenes
Species-level Match
Host Order Match
|
RISB2056 |
Odontotaenius disjunctus
Order: Coleoptera
|
plays an important role in nitrogen fixation
|
0.01% |
15.9
|
Wolbachia pipientis
Species-level Match
Host Order Match
|
RISB2621 |
Tribolium confusum
Order: Coleoptera
|
induces cytoplasmic incompatibility
|
0.09% |
15.8
|
Staphylococcus hominis
Species-level Match
Host Order Match
|
RISB1071 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.31% |
15.5
|
Lysinibacillus fusiformis
Species-level Match
Host Order Match
|
RISB1066 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.09% |
15.3
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB1065 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.07% |
15.3
|
Pantoea agglomerans
Species-level Match
Host Order Match
|
RISB1858 |
Lissorhoptrus oryzophilus
Order: Coleoptera
|
None
|
0.02% |
15.0
|
Rahnella
Host Order Match
|
RISB1623 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.03% |
14.9
|
Bacteroides
Host Order Match
|
RISB1183 |
Oryzaephilus surinamensis
Order: Coleoptera
|
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
|
0.58% |
12.6
|
Vibrio
Host Order Match
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.96% |
12.3
|
Rahnella
Host Order Match
|
RISB1800 |
Dendroctonus valens
Order: Coleoptera
|
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth
|
0.03% |
12.2
|
Rahnella
Host Order Match
|
RISB0741 |
Dendroctonus ponderosae
Order: Coleoptera
|
R. aquatilis decreased (−)-α-pinene (38%) and (+)-α-pinene (46%) by 40% and 45% (by GC-MS), respectively
|
0.03% |
12.1
|
Nostoc
Host Order Match
|
RISB0812 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-18 oxidation pathway
|
0.49% |
11.9
|
Corynebacterium
Host Order Match
|
RISB0363 |
Pagiophloeus tsushimanus
Order: Coleoptera
|
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
|
0.06% |
11.8
|
Leuconostoc
Host Order Match
|
RISB0812 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-18 oxidation pathway
|
0.04% |
11.5
|
Candidatus Mesenet
Host Order Match
|
RISB1785 |
Brontispa longissima
Order: Coleoptera
|
induced complete Cytoplasmic incompatibility (CI) (100% mortality)
|
0.12% |
11.4
|
Kosakonia
Host Order Match
|
RISB0810 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-16 oxidation pathway
|
0.02% |
11.4
|
Halomonas
Host Order Match
|
RISB1808 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.12% |
11.4
|
Turicibacter
Host Order Match
|
RISB0451 |
Odontotaenius disjunctus
Order: Coleoptera
|
degrading ellulose and xylan
|
0.13% |
10.7
|
Mycobacterium
Host Order Match
|
RISB1156 |
Nicrophorus concolor
Order: Coleoptera
|
produces Antimicrobial compounds
|
0.04% |
10.7
|
Buchnera aphidicola
Species-level Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
0.62% |
10.6
|
Klebsiella pneumoniae
Species-level Match
|
RISB2185 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.56% |
10.6
|
Aeromonas
Host Order Match
|
RISB1145 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.11% |
10.5
|
Kosakonia
Host Order Match
|
RISB1155 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.02% |
10.4
|
Buchnera aphidicola
Species-level Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
0.62% |
10.4
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
1.01% |
10.3
|
Wolbachia pipientis
Species-level Match
|
RISB0766 |
Aedes fluviatilis
Order: Diptera
|
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
|
0.09% |
10.1
|
Dysgonomonas
Host Order Match
|
RISB1481 |
Brachinus elongatulus
Order: Coleoptera
|
None
|
0.08% |
10.1
|
Paenibacillus polymyxa
Species-level Match
|
RISB2195 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.07% |
10.1
|
Listeria monocytogenes
Species-level Match
|
RISB2308 |
Drosophila melanogaster
Order: Diptera
|
L. monocytogenes infection disrupts host energy metabolism by depleting energy stores (triglycerides and glycogen) and reducing metabolic pathway activity (beta-oxidation and glycolysis). The infection affects antioxidant defense by reducing uric acid levels and alters amino acid metabolism. These metabolic changes are accompanied by melanization, potentially linked to decreased tyrosine levels.
|
0.05% |
10.1
|
Francisella tularensis
Species-level Match
|
RISB1907 |
Bombyx mori
Order: Lepidoptera
|
After infection with F. tularensis, the induction of melanization and nodulation, which are immune responses to bacterial infection, were inhibited in silkworms. Pre-inoculation of silkworms with F. tularensis enhanced the expression of antimicrobial peptides and resistance to infection by pathogenic bacteria.
|
0.03% |
10.0
|
Micromonospora
Host Order Match
|
RISB2034 |
Harpalus sinicus
Order: Coleoptera
|
None
|
0.02% |
10.0
|
Gilliamella apicola
Species-level Match
|
RISB0102 |
Apis mellifera
Order: Hymenoptera
|
Gilliamella apicola carries the gene for the desaturase FADS2, which is able to metabolize polyunsaturated fatty acids from pollen and synthesize endocannabinoid, a lipogenic neuroactive substance, thereby modulating reward learning and memory in honeybees.
|
0.01% |
10.0
|
Treponema primitia
Species-level Match
|
RISB2377 |
termite
Order: Blattodea
|
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
|
0.01% |
9.9
|
Buchnera aphidicola
Species-level Match
|
RISB0685 |
Acyrthosiphon pisum
Order: Hemiptera
|
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
|
0.62% |
9.4
|
Clostridium sp. OS1-26
Species-level Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.10% |
9.3
|
Clostridium sp. JS66
Species-level Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.09% |
9.3
|
Clostridium sp. AWRP
Species-level Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.07% |
9.3
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1122 |
Bombyx mori
Order: Lepidoptera
|
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
|
0.10% |
9.1
|
Mammaliicoccus sciuri
Species-level Match
|
RISB0075 |
Bombyx mori
Order: Lepidoptera
|
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
|
0.08% |
9.1
|
Candidatus Carsonella ruddii
Species-level Match
|
RISB0394 |
Cacopsylla pyricola
Order: Hemiptera
|
Carsonella produces most essential amino acids (EAAs) for C. pyricola, Psyllophila complements the genes missing in Carsonella for the tryptophan pathway and synthesizes some vitamins and carotenoids
|
0.01% |
9.0
|
Candidatus Portiera aleyrodidarum
Species-level Match
|
RISB1193 |
Bemisia tabaci
Order: Hemiptera
|
synthesizing essential amino acid (e.g. tryptophan, leucine and L-Isoleucine), Bemisia tabaci provides vital nutritional support for growth, development and reproduction
|
0.01% |
8.4
|
Spiroplasma sp. TIUS-1
Species-level Match
|
RISB1353 |
Cephus cinctus
Order: Hymenoptera
|
The bacterium also encoded biosynthetic pathways for essential vitamins B2, B3, and B9. We identified putative Spiroplasma virulence genes: cardiolipin and chitinase.
|
0.01% |
8.3
|
Arthrobacter sp. 24S4-2
Species-level Match
|
RISB0769 |
Delia antiqua
Order: Diptera
|
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.01% |
8.3
|
Blattabacterium cuenoti
Species-level Match
|
RISB0133 |
Panesthiinae
Order: Blattodea
|
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
|
0.33% |
8.3
|
Spiroplasma poulsonii
Species-level Match
|
RISB1346 |
Drosophila melanogaster
Order: Diptera
|
S. poulsonii protects its host against parasitoid wasps and nematodes by the action of toxins from the family of Ribosome Inactivating Proteins
|
0.02% |
7.9
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1227 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.10% |
7.8
|
Citrobacter freundii
Species-level Match
|
RISB1221 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.07% |
7.8
|
Wolbachia pipientis
Species-level Match
|
RISB1515 |
Drosophila melanogaster
Order: Diptera
|
increases the recombination rate observed across two genomic intervals and increases the efficacy of natural selection in hosts
|
0.09% |
7.6
|
Spiroplasma poulsonii
Species-level Match
|
RISB2264 |
Drosophila melanogaster
Order: Diptera
|
Spiroplasma coopts the yolk transport and uptake machinery to colonize the germ line and ensure efficient vertical transmission
|
0.02% |
7.6
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1693 |
Plutella xylostella
Order: Lepidoptera
|
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
|
0.03% |
7.5
|
Psychrobacter sp. KCTC 72983
Species-level Match
|
RISB1773 |
Calliphoridae
Order: Diptera
|
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
|
0.03% |
7.5
|
Psychrobacter sp. P11G5
Species-level Match
|
RISB1773 |
Calliphoridae
Order: Diptera
|
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
|
0.02% |
7.5
|
Candidatus Portiera aleyrodidarum
Species-level Match
|
RISB2289 |
Bemisia tabaci
Order: Hemiptera
|
encoding the capability to synthetize, or participate in the synthesis of, several amino acids and carotenoids,
|
0.01% |
7.2
|
Candidatus Portiera aleyrodidarum
Species-level Match
|
RISB1973 |
Bemisia tabaci
Order: Hemiptera
|
a primary symbiont, which compensates for the deficient nutritional composition of its food sources
|
0.01% |
7.0
|
Snodgrassella alvi
Species-level Match
|
RISB1423 |
Bombus spp.
Order: Hymenoptera
|
The bumble bee microbiome slightly increases survivorship when the host is exposed to selenate
|
0.02% |
6.9
|
Escherichia coli
Species-level Match
|
RISB2120 |
Galleria mellonella
Order: Lepidoptera
|
mediate trans-generational immune priming
|
1.01% |
6.8
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1692 |
Plutella xylostella
Order: Lepidoptera
|
participate in the synthesis of host lacking amino acids histidine and threonine
|
0.03% |
6.6
|
Xenorhabdus bovienii
Species-level Match
|
RISB2270 |
Acyrthosiphon pisum
Order: Hemiptera
|
have the gene PIN1 encoding the protease inhibitor protein against aphids
|
0.08% |
6.5
|
Lysinibacillus fusiformis
Species-level Match
|
RISB1417 |
Psammotermes hypostoma
Order: Blattodea
|
isolates showed significant cellulolytic activity
|
0.09% |
6.1
|
Lactiplantibacillus plantarum
Species-level Match
|
RISB0674 |
Drosophila melanogaster
Order: Diptera
|
could effectively inhibit fungal spore germinations
|
0.05% |
6.1
|
Proteus vulgaris
Species-level Match
|
RISB2460 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
0.04% |
6.0
|
Blattabacterium cuenoti
Species-level Match
|
RISB0518 |
Cryptocercus punctulatus
Order: Blattodea
|
collaborative arginine biosynthesis
|
0.33% |
6.0
|
Providencia rettgeri
Species-level Match
|
RISB1001 |
Anastrepha obliqua
Order: Diptera
|
improve the sexual competitiveness of males
|
0.06% |
5.9
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1691 |
Plutella xylostella
Order: Lepidoptera
|
activity of cellulose and hemicellulose
|
0.03% |
5.8
|
Chryseobacterium sp. POL2
Species-level Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.22% |
5.8
|
Blattabacterium cuenoti
Species-level Match
|
RISB0093 |
Blattella germanica
Order: Blattodea
|
obligate endosymbiont
|
0.33% |
5.8
|
Providencia sp. PROV252
Species-level Match
|
RISB1574 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
0.01% |
5.7
|
Providencia sp. PROV252
Species-level Match
|
RISB0984 |
Nasonia vitripennis
Order: Hymenoptera
|
may highly associated with diapause
|
0.01% |
5.7
|
Chryseobacterium sp. SG20098
Species-level Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.05% |
5.6
|
Chryseobacterium sp. T16E-39
Species-level Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.02% |
5.6
|
Lactobacillus
|
RISB1866 |
Drosophila melanogaster
Order: Diptera
|
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
|
0.50% |
5.5
|
Agrobacterium tumefaciens
Species-level Match
|
RISB0650 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.36% |
5.4
|
Candidatus Erwinia haradaeae
Species-level Match
|
RISB1632 |
Lachninae
Order: Hemiptera
|
None
|
0.30% |
5.3
|
Arsenophonus nasoniae
Species-level Match
|
RISB0428 |
Nasonia vitripennis
Order: Hymenoptera
|
male killing
|
0.02% |
5.3
|
Salmonella enterica
Species-level Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
0.21% |
5.2
|
Flavobacterium johnsoniae
Species-level Match
|
RISB0659 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.08% |
5.1
|
Enterobacter hormaechei
Species-level Match
|
RISB1331 |
Zeugodacus cucurbitae
Order: Diptera
|
None
|
0.06% |
5.1
|
Lactiplantibacillus plantarum
Species-level Match
|
RISB0608 |
Drosophila melanogaster
Order: Diptera
|
None
|
0.05% |
5.1
|
Rickettsia bellii
Species-level Match
|
RISB1897 |
Bemisia tabaci
Order: Hemiptera
|
None
|
0.04% |
5.0
|
Candidatus Karelsulcia muelleri
Species-level Match
|
RISB1591 |
Philaenus spumarius
Order: Hemiptera
|
None
|
0.03% |
5.0
|
Snodgrassella alvi
Species-level Match
|
RISB1947 |
Apis cerana
Order: Hymenoptera
|
None
|
0.02% |
5.0
|
Arsenophonus nasoniae
Species-level Match
|
RISB0366 |
Pachycrepoideus vindemmiae
Order: Hymenoptera
|
None
|
0.02% |
5.0
|
Candidatus Fukatsuia symbiotica
Species-level Match
|
RISB1630 |
Lachninae
Order: Hemiptera
|
None
|
0.02% |
5.0
|
Candidatus Palibaumannia cicadellinicola
Species-level Match
|
RISB1594 |
Graphocephala coccinea
Order: Hemiptera
|
None
|
0.02% |
5.0
|
Gilliamella apicola
Species-level Match
|
RISB1945 |
Apis cerana
Order: Hymenoptera
|
None
|
0.01% |
5.0
|
Candidatus Carsonella ruddii
Species-level Match
|
RISB0748 |
Diaphorina citri
Order: Hemiptera
|
None
|
0.01% |
5.0
|
Candidatus Regiella
|
RISB1370 |
Sitobion avenae
Order: Hemiptera
|
Regiella infection decreased the intrinsic rate of increase (rm) of aphids at 25 °C and 28 °C. However, at 31 °C, the effect of Regiella on the rm varied depending on the aphid genotype and density. Thus, the negative effects of this endosymbiont on its host were environmentally dependent.
|
0.01% |
5.0
|
Candidatus Regiella
|
RISB1819 |
Sitobion avenae
Order: Hemiptera
|
In R. insecticola-infected aphid lines, there were increases in plasticities for developmental times of first and second instar nymphs and for fecundity, showing novel functional roles of bacterial symbionts in plant-insect interactions.
|
0.01% |
4.8
|
Apibacter
|
RISB0603 |
Apis cerana
Order: Hymenoptera
|
The acquisition of genes for the degradation of the toxic monosaccharides potentiates Apibacter with the ability to utilize the pollen hydrolysis products, at the same time enabling monosaccharide detoxification for the host
|
0.09% |
4.6
|
Candidatus Regiella
|
RISB1363 |
Sitobion avenae
Order: Hemiptera
|
R. insecticola-infected aphids were more predated by the ladybird Hippodamia variegata irrespective of host plants and did not improve defences against coccinellid predators or metabolic rates on any host plants
|
0.01% |
4.2
|
Rickettsiella
|
RISB2479 |
Acyrthosiphon pisum
Order: Hemiptera
|
changes the insects’ body color from red to green in natural populations, the infection increased amounts of blue-green polycyclic quinones, whereas it had less of an effect on yellow-red carotenoid pigments
|
0.01% |
4.2
|
Xanthomonas
|
RISB0498 |
Xylocopa appendiculata
Order: Hymenoptera
|
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
|
0.31% |
4.1
|
Weissella
|
RISB1982 |
Blattella germanica
Order: Blattodea
|
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
|
0.17% |
4.0
|
Lactobacillus
|
RISB0292 |
Lymantria dispar asiatica
Order: Lepidoptera
|
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
|
0.50% |
3.9
|
Photorhabdus
|
RISB2532 |
Manduca sexta
Order: Lepidoptera
|
produces a small-molecule antibiotic (E)-1,3-dihydroxy-2-(isopropyl)-5-(2-phenylethenyl)benzene (ST) that also acts as an inhibitor of phenoloxidase (PO) in the insect host Manduca sexta.
|
0.04% |
3.8
|
Rickettsiella
|
RISB2262 |
Acyrthosiphon pisum
Order: Hemiptera
|
against this entomopathogen Pandora neoaphidis, reduce mortality and also decrease fungal sporulation on dead aphids which may help protect nearby genetically identical insects
|
0.01% |
3.5
|
Lactobacillus
|
RISB0715 |
Spodoptera frugiperda
Order: Lepidoptera
|
Have the function of nutrient absorption, energy metabolism, the plant’s secondary metabolites degradation, insect immunity regulation, and so on
|
0.50% |
3.4
|
Candidatus Blochmanniella
|
RISB2542 |
Camponotus
Order: Hymenoptera
|
Blochmannia provide essential amino acids to its host,Camponotus floridanus, and that it may also play a role in nitrogen recycling via its functional urease
|
0.09% |
3.2
|
Candidatus Blochmanniella
|
RISB1827 |
Camponotus floridanus
Order: Hymenoptera
|
a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission
|
0.09% |
3.2
|
Rickettsiella
|
RISB1739 |
Acyrthosiphon pisum
Order: Hemiptera
|
in an experiment with a single-injected isolate of Rickettsiella sp. wasps were also attracted to plants fed on by aphids without secondary symbionts
|
0.01% |
3.0
|
Ignatzschineria
|
RISB0562 |
Chrysomya megacephala
Order: Diptera
|
Ignatzschineria indica is a Gram-negative bacterium commonly associated with maggot infestation and myiasis, a probable marker for myiasis diagnosis
|
0.01% |
3.0
|
Weissella
|
RISB0641 |
Formica
Order: Hymenoptera
|
exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew
|
0.17% |
2.9
|
Bacteroides
|
RISB0256 |
Leptocybe invasa
Order: Hymenoptera
|
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
|
0.58% |
2.9
|
Candidatus Blochmanniella
|
RISB2448 |
Camponotus floridanus
Order: Hymenoptera
|
nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling
|
0.09% |
2.8
|
Photorhabdus
|
RISB2573 |
Manduca sexta
Order: Lepidoptera
|
the bacteria are symbiotic with entomopathogenic nematodes but become pathogenic on release from the nematode into the insect blood system
|
0.04% |
2.8
|
Bacteroides
|
RISB0090 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.58% |
2.7
|
Bartonella
|
RISB1673 |
Apis mellifera
Order: Hymenoptera
|
a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream
|
0.05% |
2.6
|
Shewanella
|
RISB1924 |
Anopheles gambiae
Order: Diptera
|
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
|
0.07% |
2.6
|
Yersinia
|
RISB0492 |
Cimex hemipterus
Order: Hemiptera
|
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
|
0.09% |
2.5
|
Streptococcus
|
RISB2625 |
Galleria mellonella
Order: Lepidoptera
|
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
|
0.42% |
2.4
|
Liberibacter
|
RISB2310 |
Bactericerca cockerelli
Order: Hemiptera
|
manipulate plant signaling and defensive responses, suppress accumulation of defense transcripts like JA and SA
|
0.01% |
2.3
|
Xanthomonas
|
RISB0217 |
Xylocopa appendiculata
Order: Hymenoptera
|
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
|
0.31% |
2.3
|
Blautia
|
RISB0091 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.09% |
2.2
|
Nitrosospira
|
RISB0869 |
Sirex noctilio
Order: Hymenoptera
|
might be involved in degrading organic matter and fixing nitrogen occurred exclusively in the larval gut
|
0.01% |
2.1
|
Apilactobacillus
|
RISB0475 |
Apis mellifera
Order: Hymenoptera
|
A. kunkeei alleviated acetamiprid-induced symbiotic microbiota dysregulation and mortality in honeybees
|
0.01% |
2.1
|
Streptococcus
|
RISB2624 |
Reticulitermes flavipes
Order: Blattodea
|
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
|
0.42% |
2.1
|
Corynebacterium
|
RISB0531 |
Helicoverpa armigera
Order: Lepidoptera
|
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
|
0.06% |
1.7
|
Liberibacter
|
RISB2524 |
Bactericera cockerelli
Order: Hemiptera
|
Reduced expression of plant defensive gene in tomato probably for psyllid success
|
0.01% |
1.6
|
Streptococcus
|
RISB2604 |
Homona magnanima
Order: Lepidoptera
|
influence the growth of Bacillus thuringiensis in the larvae
|
0.42% |
1.6
|
Dysgonomonas
|
RISB1235 |
Hermetia illucens
Order: Diptera
|
provides the tools for degrading of a broad range of substrates
|
0.08% |
1.3
|
Massilia
|
RISB2151 |
Osmia bicornis
Order: Hymenoptera
|
may be essential to support Osmia larvae in their nutrient uptake
|
0.03% |
1.3
|
Variovorax
|
RISB2153 |
Osmia bicornis
Order: Hymenoptera
|
may be essential to support Osmia larvae in their nutrient uptake
|
0.02% |
1.3
|
Photorhabdus
|
RISB0532 |
Drosophila melanogaster
Order: Diptera
|
produces toxin complex (Tc) toxins as major virulence factors
|
0.04% |
1.3
|
Paraclostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.14% |
1.2
|
Dickeya
|
RISB1086 |
Rhodnius prolixus
Order: Hemiptera
|
supply enzymatic biosynthesis of B-complex vitamins
|
0.03% |
1.1
|
Brevibacterium
|
RISB0464 |
Acrida cinerea
Order: Orthoptera
|
correlated with the hemicellulose digestibility
|
0.03% |
1.0
|
Aeromonas
|
RISB2456 |
Bombyx mori
Order: Lepidoptera
|
able to utilize the CMcellulose and xylan
|
0.11% |
0.9
|
Liberibacter
|
RISB2333 |
Cacopsylla pyri
Order: Hemiptera
|
behaves as an endophyte rather than a pathogen
|
0.01% |
0.9
|
Corynebacterium
|
RISB2360 |
Bombyx mori
Order: Lepidoptera
|
producing lipase in a gut environment
|
0.06% |
0.8
|
Brevibacterium
|
RISB2359 |
Bombyx mori
Order: Lepidoptera
|
producing lipase in a gut environment
|
0.03% |
0.8
|
Aeromonas
|
RISB2086 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.11% |
0.7
|
Priestia
|
RISB0839 |
Helicoverpa armigera
Order: Lepidoptera
|
producing amylase
|
0.26% |
0.6
|
Peribacillus
|
RISB1877 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.22% |
0.5
|
Cupriavidus
|
RISB0694 |
Alydus tomentosus
Order: Hemiptera
|
None
|
0.37% |
0.4
|
Helicobacter
|
RISB0662 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.19% |
0.2
|
Weissella
|
RISB1566 |
Liometopum apiculatum
Order: Hymenoptera
|
None
|
0.17% |
0.2
|
Halomonas
|
RISB1374 |
Bemisia tabaci
Order: Hemiptera
|
None
|
0.12% |
0.1
|
Legionella
|
RISB1687 |
Polyplax serrata
Order: Phthiraptera
|
None
|
0.11% |
0.1
|
Neisseria
|
RISB0512 |
Plutella xylostella
Order: Lepidoptera
|
None
|
0.11% |
0.1
|
Metabacillus
|
RISB0902 |
Myzus persicae
Order: Hemiptera
|
None
|
0.10% |
0.1
|
Apibacter
|
RISB0604 |
Apis cerana
Order: Hymenoptera
|
None
|
0.09% |
0.1
|
Yersinia
|
RISB0407 |
Anaphes nitens
Order: Hymenoptera
|
None
|
0.09% |
0.1
|
Myroides
|
RISB0626 |
Musca altica
Order: Diptera
|
None
|
0.09% |
0.1
|
Vagococcus
|
RISB0042 |
Aldrichina grahami
Order: Diptera
|
None
|
0.08% |
0.1
|
Candidatus Profftia
|
RISB1664 |
Adelgidae
Order: Hemiptera
|
None
|
0.04% |
0.0
|
Acidobacterium
|
RISB1136 |
Coptotermes
Order: Blattodea
|
None
|
0.04% |
0.0
|
Brevibacterium
|
RISB0897 |
Myzus persicae
Order: Hemiptera
|
None
|
0.03% |
0.0
|
Paraburkholderia
|
RISB0125 |
Physopelta gutta
Order: Hemiptera
|
None
|
0.03% |
0.0
|
Candidatus Arthromitus
|
RISB2613 |
Multiple species
Order: None
|
None
|
0.03% |
0.0
|
Micromonospora
|
RISB2033 |
Palomena viridissima
Order: Hemiptera
|
None
|
0.02% |
0.0
|
Variovorax
|
RISB1712 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.02% |
0.0
|
Ralstonia
|
RISB0243 |
Spodoptera frugiperda
Order: Lepidoptera
|
None
|
0.01% |
0.0
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.