SRR27811465 - Listrus sp.
Basic Information
Run: SRR27811465
Assay Type: WGS
Bioproject: PRJNA1068458
Biosample: SAMN39685029
Bytes: 437497969
Center Name: MAX PLANCK INSTITUTE FOR CHEMICAL ECOLOGY
Sequencing Information
Instrument: NextSeq 2000
Library Layout: PAIRED
Library Selection: RANDOM
Platform: ILLUMINA
Geographic Information
Country: USA
Continent: North America
Location Name: USA
Latitude/Longitude: 39.79193 N 111.67870 W
Sample Information
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Bacillus cereus
Species-level Match
Host Order Match
|
RISB1056 |
Oryctes rhinoceros
Order: Coleoptera
|
provide symbiotic digestive functions to Oryctes
|
10.81% |
26.8
|
Bacillus cereus
Species-level Match
Host Order Match
|
RISB1778 |
Lissorhoptrus oryzophilus
Order: Coleoptera
|
might be promising paratransgenesis candidates
|
10.81% |
26.7
|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
3.24% |
23.1
|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB2224 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
3.24% |
21.6
|
Bacillus cereus
Species-level Match
|
RISB2161 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
10.81% |
20.8
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
2.02% |
19.7
|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB0815 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-15 oxidation pathway
|
3.24% |
19.7
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB0139 |
Tenebrio molitor
Order: Coleoptera
|
correlated with polyvinyl chloride PVC degradation
|
3.13% |
19.1
|
Streptomyces sp. WAC00303
Species-level Match
Host Order Match
|
RISB0777 |
Copris tripartitus
Order: Coleoptera
|
contribute brood ball hygiene by inhibiting fungal parasites in the environment
|
1.70% |
18.3
|
Streptomyces sp. NBC_01321
Species-level Match
Host Order Match
|
RISB0777 |
Copris tripartitus
Order: Coleoptera
|
contribute brood ball hygiene by inhibiting fungal parasites in the environment
|
1.49% |
18.1
|
Streptomyces sp. T12
Species-level Match
Host Order Match
|
RISB0777 |
Copris tripartitus
Order: Coleoptera
|
contribute brood ball hygiene by inhibiting fungal parasites in the environment
|
1.20% |
17.8
|
Wolbachia pipientis
Species-level Match
Host Order Match
|
RISB2621 |
Tribolium confusum
Order: Coleoptera
|
induces cytoplasmic incompatibility
|
1.28% |
17.0
|
Citrobacter
Host Order Match
|
RISB1357 |
Callosobruchus maculatus
Order: Coleoptera
|
These bacterial phyla may allow the adults C. maculatus to survive on DDVP treated grains, thereby making it inappropriate to control the beetle populations in the field.
|
1.07% |
14.5
|
Citrobacter
Host Order Match
|
RISB0517 |
Leptinotarsa decemlineata
Order: Coleoptera
|
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
|
1.07% |
14.0
|
Lactococcus
Host Order Match
|
RISB0967 |
Oulema melanopus
Order: Coleoptera
|
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
|
0.40% |
14.0
|
Lactococcus
Host Order Match
|
RISB0116 |
Novius pumilus
Order: Coleoptera
|
were predicted to have genes related to hydrocarbon, fatty acids, and chitin degradation, which may assist their hosts in digesting the wax shell covering the scale insects
|
0.40% |
13.8
|
Citrobacter
Host Order Match
|
RISB0127 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
1.07% |
13.8
|
Vibrio
Host Order Match
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
1.70% |
13.0
|
Lactococcus
Host Order Match
|
RISB1430 |
Rhynchophorus ferrugineus
Order: Coleoptera
|
promote the development and body mass gain of RPW larvae by improving their nutrition metabolism
|
0.40% |
12.3
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1122 |
Bombyx mori
Order: Lepidoptera
|
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
|
3.13% |
12.1
|
Buchnera aphidicola
Species-level Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
1.72% |
11.7
|
Paenibacillus
Host Order Match
|
RISB0813 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-9 oxidation pathway
|
0.32% |
11.7
|
Buchnera aphidicola
Species-level Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
1.72% |
11.5
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
2.02% |
11.3
|
Wolbachia pipientis
Species-level Match
|
RISB0766 |
Aedes fluviatilis
Order: Diptera
|
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
|
1.28% |
11.3
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1227 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
3.13% |
10.8
|
Buchnera aphidicola
Species-level Match
|
RISB0685 |
Acyrthosiphon pisum
Order: Hemiptera
|
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
|
1.72% |
10.5
|
Wolbachia pipientis
Species-level Match
|
RISB1515 |
Drosophila melanogaster
Order: Diptera
|
increases the recombination rate observed across two genomic intervals and increases the efficacy of natural selection in hosts
|
1.28% |
8.8
|
Blattabacterium cuenoti
Species-level Match
|
RISB0133 |
Panesthiinae
Order: Blattodea
|
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
|
0.34% |
8.3
|
Escherichia coli
Species-level Match
|
RISB2120 |
Galleria mellonella
Order: Lepidoptera
|
mediate trans-generational immune priming
|
2.02% |
7.8
|
Blattabacterium cuenoti
Species-level Match
|
RISB0518 |
Cryptocercus punctulatus
Order: Blattodea
|
collaborative arginine biosynthesis
|
0.34% |
6.0
|
Blattabacterium cuenoti
Species-level Match
|
RISB0093 |
Blattella germanica
Order: Blattodea
|
obligate endosymbiont
|
0.34% |
5.8
|
Paenibacillus
|
RISB2195 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.32% |
5.3
|
Candidatus Erwinia haradaeae
Species-level Match
|
RISB1632 |
Lachninae
Order: Hemiptera
|
None
|
0.28% |
5.3
|
Clostridium
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.78% |
5.0
|
Xanthomonas
|
RISB0498 |
Xylocopa appendiculata
Order: Hymenoptera
|
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
|
0.34% |
4.1
|
Pseudonocardia
|
RISB0947 |
Acromyrmex
Order: Hymenoptera
|
Pseudonocardia in the Acromyrmex leaf-cutter ants as a protective partner against the entomopathogenic fungus Metarhizium
|
1.32% |
3.7
|
Cupriavidus
|
RISB0694 |
Alydus tomentosus
Order: Hemiptera
|
None
|
3.73% |
3.7
|
Paenibacillus
|
RISB0774 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.32% |
3.6
|
Pseudonocardia
|
RISB1218 |
Mycocepurus smithii
Order: Hymenoptera
|
produce secondary metabolites with antibiotic activity that protects the fungus garden against pathogens
|
1.32% |
3.4
|
Curtobacterium
|
RISB1910 |
Hyles euphorbiae
Order: Lepidoptera
|
able to degrade alkaloids and/or latex
|
1.73% |
2.5
|
Providencia
|
RISB1001 |
Anastrepha obliqua
Order: Diptera
|
improve the sexual competitiveness of males
|
1.48% |
2.3
|
Xanthomonas
|
RISB0217 |
Xylocopa appendiculata
Order: Hymenoptera
|
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
|
0.34% |
2.3
|
Providencia
|
RISB1574 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
1.48% |
2.2
|
Providencia
|
RISB0984 |
Nasonia vitripennis
Order: Hymenoptera
|
may highly associated with diapause
|
1.48% |
2.2
|
Clostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.78% |
1.8
|
Curtobacterium
|
RISB0900 |
Myzus persicae
Order: Hemiptera
|
None
|
1.73% |
1.7
|
Gordonia
|
RISB1912 |
Hyles euphorbiae
Order: Lepidoptera
|
able to degrade alkaloids and/or latex
|
0.62% |
1.4
|
Clostridium
|
RISB1959 |
Pyrrhocoridae
Order: Hemiptera
|
None
|
0.78% |
0.8
|
Ralstonia
|
RISB0243 |
Spodoptera frugiperda
Order: Lepidoptera
|
None
|
0.43% |
0.4
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.