SRR27811434 - Danacea nigritarsis ITA
Basic Information
Run: SRR27811434
Assay Type: WGS
Bioproject: PRJNA1068458
Biosample: SAMN39669217
Bytes: 1638542182
Center Name: MAX PLANCK INSTITUTE FOR CHEMICAL ECOLOGY
Sequencing Information
Instrument: Illumina HiSeq 3000
Library Layout: PAIRED
Library Selection: RANDOM
Platform: ILLUMINA
Geographic Information
Country: Italy
Continent: Europe
Location Name: Italy
Latitude/Longitude: 43.955000 N 8.123333 E
Sample Information
Host: Danacea nigritarsis ITA
Isolation: -
Biosample Model: Metagenome or environmental
Collection Date: 2020
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Buchnera aphidicola
Species-level Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
19.22% |
29.2
|
Buchnera aphidicola
Species-level Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
19.22% |
29.0
|
Buchnera aphidicola
Species-level Match
|
RISB0685 |
Acyrthosiphon pisum
Order: Hemiptera
|
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
|
19.22% |
28.0
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
4.06% |
21.8
|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
1.46% |
21.3
|
Acinetobacter sp. ESL0695
Species-level Match
Host Order Match
|
RISB0730 |
Curculio chinensis
Order: Coleoptera
|
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
|
0.22% |
19.9
|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB2224 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
1.46% |
19.8
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB0967 |
Oulema melanopus
Order: Coleoptera
|
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
|
0.24% |
18.8
|
Citrobacter freundii
Species-level Match
Host Order Match
|
RISB0517 |
Leptinotarsa decemlineata
Order: Coleoptera
|
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
|
0.58% |
18.5
|
Sphingobacterium sp. SRCM116780
Species-level Match
Host Order Match
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.07% |
18.4
|
Citrobacter freundii
Species-level Match
Host Order Match
|
RISB0127 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
0.58% |
18.3
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB1867 |
Costelytra zealandica
Order: Coleoptera
|
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
|
0.26% |
18.1
|
Proteus vulgaris
Species-level Match
Host Order Match
|
RISB0001 |
Leptinotarsa decemlineata
Order: Coleoptera
|
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
|
0.26% |
18.0
|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB0815 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-15 oxidation pathway
|
1.46% |
17.9
|
Klebsiella pneumoniae
Species-level Match
Host Order Match
|
RISB1153 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
2.52% |
17.9
|
Bacillus cereus
Species-level Match
Host Order Match
|
RISB1056 |
Oryctes rhinoceros
Order: Coleoptera
|
provide symbiotic digestive functions to Oryctes
|
1.87% |
17.8
|
Bacillus cereus
Species-level Match
Host Order Match
|
RISB1778 |
Lissorhoptrus oryzophilus
Order: Coleoptera
|
might be promising paratransgenesis candidates
|
1.87% |
17.8
|
Sodalis glossinidius
Species-level Match
Host Order Match
|
RISB2588 |
Sitophilus zeamais
Order: Coleoptera
|
maintains and expresses inv/spa genes encoding a type III secretion system homologous to that used for invasion by bacterial pathogens
|
0.05% |
17.7
|
Bacillus sp. 1NLA3E
Species-level Match
Host Order Match
|
RISB1645 |
Osphranteria coerulescens
Order: Coleoptera
|
The isolate has cellulolytic activity and can hydrolyze CMC, avicel, cellulose and sawdust with broad temperature and pH stability
|
0.08% |
17.7
|
Acinetobacter sp. ESL0695
Species-level Match
Host Order Match
|
RISB0706 |
Curculio chinensis
Order: Coleoptera
|
facilitate the degradation of tea saponin; genome contains 47 genes relating to triterpenoids degradation
|
0.22% |
17.3
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB1430 |
Rhynchophorus ferrugineus
Order: Coleoptera
|
promote the development and body mass gain of RPW larvae by improving their nutrition metabolism
|
0.24% |
17.2
|
Streptomyces sp. T12
Species-level Match
Host Order Match
|
RISB0777 |
Copris tripartitus
Order: Coleoptera
|
contribute brood ball hygiene by inhibiting fungal parasites in the environment
|
0.54% |
17.1
|
Enterobacter cloacae complex sp. Mu1197
Species-level Match
Host Order Match
|
RISB1428 |
Rhynchophorus ferrugineus
Order: Coleoptera
|
promote the development and body mass gain of RPW larvae by improving their nutrition metabolism
|
0.18% |
17.1
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB1548 |
Costelytra zealandica
Order: Coleoptera
|
symbionts residing in the colleterial glands produce phenol 1 as the female sex pheromone
|
0.26% |
17.0
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB1868 |
Costelytra zealandica
Order: Coleoptera
|
produces phenol as the sex pheromone of the host from tyrosine in the colleterial gland
|
0.26% |
17.0
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB0139 |
Tenebrio molitor
Order: Coleoptera
|
correlated with polyvinyl chloride PVC degradation
|
0.88% |
16.9
|
Streptomyces sp. KMM 9044
Species-level Match
Host Order Match
|
RISB0777 |
Copris tripartitus
Order: Coleoptera
|
contribute brood ball hygiene by inhibiting fungal parasites in the environment
|
0.09% |
16.7
|
Acinetobacter sp. ESL0695
Species-level Match
Host Order Match
|
RISB0804 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-11 oxidation pathway
|
0.22% |
16.6
|
Streptomyces sp. SUK 48
Species-level Match
Host Order Match
|
RISB0777 |
Copris tripartitus
Order: Coleoptera
|
contribute brood ball hygiene by inhibiting fungal parasites in the environment
|
0.05% |
16.6
|
Paenibacillus sp. FSL H8-0079
Species-level Match
Host Order Match
|
RISB0813 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-9 oxidation pathway
|
0.18% |
16.6
|
Erwinia sp. HDF1-3R
Species-level Match
Host Order Match
|
RISB0808 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-12 oxidation pathway
|
0.12% |
16.5
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB1065 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.24% |
15.5
|
Staphylococcus hominis
Species-level Match
Host Order Match
|
RISB1071 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.05% |
15.3
|
Wolbachia
Host Order Match
|
RISB1452 |
Octodonta nipae
Order: Coleoptera
|
Wolbachia harbored dominantly in a female than the male adult, while, no significant differences were observed between male and female body parts and tissues
|
1.42% |
14.6
|
Vibrio
Host Order Match
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
2.54% |
13.9
|
Wolbachia
Host Order Match
|
RISB2107 |
Sitophilus zeamais
Order: Coleoptera
|
Wolbachia directly favored weevil fertility and exhibited only mild indirect effects, usually enhancing the SZPE effect
|
1.42% |
13.8
|
Spiroplasma
Host Order Match
|
RISB0343 |
Harmonia axyridis
Order: Coleoptera
|
female ladybirds co-infected with Hesperomyces harmoniae and Spiroplasma had a significantly lower fecundity and hatchability compared to females with only one or no symbiont
|
0.32% |
13.8
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
4.06% |
13.4
|
Wolbachia
Host Order Match
|
RISB1282 |
Ips sp.
Order: Coleoptera
|
inducing cytoplasmic incompatibility, resulting in reproductive distortions and hence
|
1.42% |
13.1
|
Spiroplasma
Host Order Match
|
RISB1483 |
Brachinus elongatulus
Order: Coleoptera
|
may manipulate host reproduction (e.g., cause male-killing) or provide resistance to nematodes and/or parasitoid wasps
|
0.32% |
12.7
|
Klebsiella pneumoniae
Species-level Match
|
RISB2185 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
2.52% |
12.5
|
Bacteroides
Host Order Match
|
RISB1183 |
Oryzaephilus surinamensis
Order: Coleoptera
|
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
|
0.19% |
12.2
|
Rickettsia
Host Order Match
|
RISB1279 |
Ips sp.
Order: Coleoptera
|
inducing cytoplasmic incompatibility, resulting in reproductive distortions and hence
|
0.27% |
12.0
|
Rickettsia
Host Order Match
|
RISB0970 |
Oulema melanopus
Order: Coleoptera
|
may be associated with insect reproduction and maturation of their sexual organs
|
0.27% |
11.9
|
Rhizobium
Host Order Match
|
RISB0135 |
Coccinella septempunctata
Order: Coleoptera
|
be commonly found in plant roots and they all have nitrogen fixation abilities
|
0.29% |
11.9
|
Rickettsia
Host Order Match
|
RISB1954 |
Sitona obsoletus
Order: Coleoptera
|
potential defensive properties against he parasitoid Microctonus aethiopoides
|
0.27% |
11.8
|
Nostoc
Host Order Match
|
RISB0812 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-18 oxidation pathway
|
0.22% |
11.6
|
Halomonas
Host Order Match
|
RISB1808 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.06% |
11.4
|
Spiroplasma
Host Order Match
|
RISB0250 |
Tenebrio molitor
Order: Coleoptera
|
associated with PE biodegradation
|
0.32% |
11.0
|
Mycobacterium
Host Order Match
|
RISB1156 |
Nicrophorus concolor
Order: Coleoptera
|
produces Antimicrobial compounds
|
0.24% |
10.9
|
Candidatus Pantoea carbekii
Species-level Match
|
RISB1046 |
Halyomorpha halys
Order: Hemiptera
|
provides its host with essential nutrients, vitamins, cofactors and protection of the most vulnerable stages of early development (1st nymphal stages). Pantoea carbekii is highly stress tolerant, especially once secreted to cover the eggs, by its unique biofilm-formation properties, securing host offspring survival
|
0.50% |
10.5
|
Lysinibacillus
Host Order Match
|
RISB1066 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.11% |
10.3
|
Gilliamella apicola
Species-level Match
|
RISB0102 |
Apis mellifera
Order: Hymenoptera
|
Gilliamella apicola carries the gene for the desaturase FADS2, which is able to metabolize polyunsaturated fatty acids from pollen and synthesize endocannabinoid, a lipogenic neuroactive substance, thereby modulating reward learning and memory in honeybees.
|
0.16% |
10.2
|
Francisella tularensis
Species-level Match
|
RISB1907 |
Bombyx mori
Order: Lepidoptera
|
After infection with F. tularensis, the induction of melanization and nodulation, which are immune responses to bacterial infection, were inhibited in silkworms. Pre-inoculation of silkworms with F. tularensis enhanced the expression of antimicrobial peptides and resistance to infection by pathogenic bacteria.
|
0.07% |
10.1
|
Escherichia coli
Species-level Match
|
RISB2120 |
Galleria mellonella
Order: Lepidoptera
|
mediate trans-generational immune priming
|
4.06% |
9.9
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1122 |
Bombyx mori
Order: Lepidoptera
|
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
|
0.88% |
9.9
|
Salmonella enterica
Species-level Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
4.46% |
9.5
|
Candidatus Schneideria nysicola
Species-level Match
|
RISB0872 |
Nysius sp.
Order: Hemiptera
|
synthesize four B vitamins(Pan, pantothenate;Fol, folate; Rib, riboflavin; Pyr, pyridoxine) and five Essential Amino Acids(Ile, isoleucine; Val, valine; Lys, lysine; Thr, threonine; Phe, phenylalanine)
|
0.42% |
9.4
|
Clostridium sp. C1
Species-level Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.19% |
9.4
|
Clostridium sp. MD294
Species-level Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.08% |
9.3
|
Mammaliicoccus sciuri
Species-level Match
|
RISB0075 |
Bombyx mori
Order: Lepidoptera
|
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
|
0.05% |
9.1
|
Candidatus Mikella endobia
Species-level Match
|
RISB1887 |
Paracoccus marginatus
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.27% |
8.6
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1227 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.88% |
8.6
|
Blattabacterium cuenoti
Species-level Match
|
RISB0133 |
Panesthiinae
Order: Blattodea
|
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
|
0.64% |
8.6
|
Klebsiella pneumoniae
Species-level Match
|
RISB2459 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
2.52% |
8.5
|
Candidatus Gullanella endobia
Species-level Match
|
RISB1885 |
Ferrisia virgata
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.13% |
8.5
|
Candidatus Doolittlea endobia
Species-level Match
|
RISB1884 |
Maconellicoccus hirsutus
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.12% |
8.5
|
Candidatus Portiera aleyrodidarum
Species-level Match
|
RISB1193 |
Bemisia tabaci
Order: Hemiptera
|
synthesizing essential amino acid (e.g. tryptophan, leucine and L-Isoleucine), Bemisia tabaci provides vital nutritional support for growth, development and reproduction
|
0.08% |
8.5
|
Candidatus Hoaglandella endobia
Species-level Match
|
RISB1886 |
Trionymus perrisii
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.11% |
8.5
|
Paenibacillus sp. FSL H8-0079
Species-level Match
|
RISB0774 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.18% |
8.4
|
Lactobacillus sp. PV034
Species-level Match
|
RISB0292 |
Lymantria dispar asiatica
Order: Lepidoptera
|
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
|
0.05% |
8.4
|
Citrobacter freundii
Species-level Match
|
RISB1221 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.58% |
8.3
|
Wigglesworthia glossinidia
Species-level Match
|
RISB0369 |
Glossina morsitans
Order: Diptera
|
symbiont-derived factors, likely B vitamins, are critical for the proper function of both lipid biosynthesis and lipolysis to maintain tsetse fly fecundity
|
0.14% |
8.2
|
Candidatus Moranella endobia
Species-level Match
|
RISB2232 |
Planococcus citri
Order: Hemiptera
|
be responsible for the biosynthesis of most cellular components and energy provision, and controls most informational processes for the consortium
|
0.17% |
8.1
|
Candidatus Tachikawaea gelatinosa
Species-level Match
|
RISB2112 |
Urostylis westwoodii
Order: Hemiptera
|
the symbiont localizes to a specialized midgut region and supplies essential amino acids deficient in the host's diet
|
0.67% |
8.0
|
Candidatus Ishikawella capsulata
Species-level Match
|
RISB2368 |
Megacopta punctatissima
Order: Hemiptera
|
Microbe compensates for nutritional deficiency of host diet by supplying essential amino acids
|
0.95% |
7.8
|
Sodalis glossinidius
Species-level Match
|
RISB2256 |
Glossina palpalis
Order: Diptera
|
flies harbouring this symbiont have three times greater probability of being infected by trypanosomes than flies without the symbiont.
|
0.05% |
7.7
|
Enterobacter cloacae complex sp. Mu1197
Species-level Match
|
RISB1699 |
Plutella xylostella
Order: Lepidoptera
|
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
|
0.18% |
7.7
|
Candidatus Portiera aleyrodidarum
Species-level Match
|
RISB2289 |
Bemisia tabaci
Order: Hemiptera
|
encoding the capability to synthetize, or participate in the synthesis of, several amino acids and carotenoids,
|
0.08% |
7.3
|
Enterobacter cloacae complex sp. Mu1197
Species-level Match
|
RISB2217 |
Thermobia domestica
Order: Zygentoma
|
Mediated by two microbial symbiont, the firebat saggregates in response to the faeces of conspecifics
|
0.18% |
7.2
|
Wigglesworthia glossinidia
Species-level Match
|
RISB1786 |
Glossina morsitans
Order: Diptera
|
Synthesis of a large number of B vitamins, to supplement the host nutritional deficiencies of the diet
|
0.14% |
7.2
|
Candidatus Portiera aleyrodidarum
Species-level Match
|
RISB1973 |
Bemisia tabaci
Order: Hemiptera
|
a primary symbiont, which compensates for the deficient nutritional composition of its food sources
|
0.08% |
7.1
|
Frischella perrara
Species-level Match
|
RISB2028 |
Diceroprocta semicincta
Order: Hemiptera
|
causes the formation of a scab-like structure on the gut epithelium of its host
|
0.23% |
6.8
|
Candidatus Erwinia haradaeae
Species-level Match
|
RISB1632 |
Lachninae
Order: Hemiptera
|
None
|
1.79% |
6.8
|
Candidatus Blochmanniella
|
RISB2542 |
Camponotus
Order: Hymenoptera
|
Blochmannia provide essential amino acids to its host,Camponotus floridanus, and that it may also play a role in nitrogen recycling via its functional urease
|
3.64% |
6.8
|
Candidatus Westeberhardia cardiocondylae
Species-level Match
|
RISB1794 |
Cardiocondyla obscurior
Order: Hymenoptera
|
Contributes to cuticle formation and is responsible for host invasive success
|
0.20% |
6.7
|
Candidatus Blochmanniella
|
RISB1827 |
Camponotus floridanus
Order: Hymenoptera
|
a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission
|
3.64% |
6.7
|
Candidatus Ishikawella capsulata
Species-level Match
|
RISB2543 |
Megacopta punctatissima
Order: Hemiptera
|
Enhance pest status of the insect host
|
0.95% |
6.7
|
Sodalis glossinidius
Species-level Match
|
RISB2471 |
Glossina morsitans
Order: Diptera
|
retains a thiamine ABC transporter (tbpAthiPQ) believed to salvage thiamine
|
0.05% |
6.6
|
Candidatus Blochmanniella
|
RISB2448 |
Camponotus floridanus
Order: Hymenoptera
|
nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling
|
3.64% |
6.4
|
Candidatus Pantoea carbekii
Species-level Match
|
RISB2115 |
Halyomorpha halys
Order: Hemiptera
|
the primary bacterial symbiont of H. halys
|
0.50% |
6.3
|
Blattabacterium cuenoti
Species-level Match
|
RISB0518 |
Cryptocercus punctulatus
Order: Blattodea
|
collaborative arginine biosynthesis
|
0.64% |
6.3
|
Wigglesworthia glossinidia
Species-level Match
|
RISB2577 |
Glossina brevipalpis
Order: Diptera
|
provide its tsetse host with metabolites such as vitamins
|
0.14% |
6.3
|
Proteus vulgaris
Species-level Match
|
RISB2460 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
0.26% |
6.3
|
Candidatus Westeberhardia cardiocondylae
Species-level Match
|
RISB1795 |
Cardiocondyla obscurior
Order: Hymenoptera
|
a contribution of Westeberhardia to cuticle formation
|
0.20% |
6.3
|
Candidatus Riesia pediculicola
Species-level Match
|
RISB2452 |
Pediculus humanus humanus
Order: Phthiraptera
|
supplement body lice nutritionally deficient blood diet
|
0.11% |
6.2
|
Arsenophonus
|
RISB1047 |
Aphis gossypii
Order: Hemiptera
|
secondary symbiont reduction led to reduction of the total life span and intrinsic rate of natural increase as well as appearance of the deformed dead offspring. H. defensa and Arsenophonus contributed to the fitness of A. gossypii by enhancing its performance, but not through parasitoid resistance.
|
1.21% |
6.2
|
Blattabacterium cuenoti
Species-level Match
|
RISB0093 |
Blattella germanica
Order: Blattodea
|
obligate endosymbiont
|
0.64% |
6.1
|
Arsenophonus
|
RISB1300 |
Aphis gossypii
Order: Hemiptera
|
Arsenophonus sp. can have different effects on its hosts, including obligate mutualism in blood-sucking insects, improving the performance of whiteflies, or through facultative mutualism by protecting psyllids against parasitoid attacks.
|
1.21% |
6.0
|
Chryseobacterium sp. MYb264
Species-level Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.25% |
5.8
|
Paenibacillus sp. FSL H8-0079
Species-level Match
|
RISB2098 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.18% |
5.7
|
Erwinia sp. HDF1-3R
Species-level Match
|
RISB1986 |
Bombyx mori
Order: Lepidoptera
|
producing cellulase and amylase
|
0.12% |
5.7
|
Candidatus Palibaumannia cicadellinicola
Species-level Match
|
RISB1594 |
Graphocephala coccinea
Order: Hemiptera
|
None
|
0.62% |
5.6
|
Providencia alcalifaciens
Species-level Match
|
RISB1168 |
Bactrocera dorsalis
Order: Diptera
|
Promote the growth of larvae
|
0.05% |
5.6
|
Arsenophonus
|
RISB1334 |
Ommatissus lybicus
Order: Hemiptera
|
the removal of Arsenophonus increased the developmental time of the immature stages and reduced the values of different life-history parameters including nymphal survival rate and adult longevity in the host
|
1.21% |
5.4
|
Staphylococcus hominis
Species-level Match
|
RISB1881 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.05% |
5.3
|
Candidatus Annandia adelgestsuga
Species-level Match
|
RISB2207 |
Adelges tsugae
Order: Hemiptera
|
None
|
0.30% |
5.3
|
Candidatus Annandia pinicola
Species-level Match
|
RISB1661 |
Adelgidae
Order: Hemiptera
|
None
|
0.25% |
5.3
|
Candidatus Moranella endobia
Species-level Match
|
RISB1588 |
Planococcus citri
Order: Hemiptera
|
None
|
0.17% |
5.2
|
Gilliamella apicola
Species-level Match
|
RISB1945 |
Apis cerana
Order: Hymenoptera
|
None
|
0.16% |
5.2
|
Candidatus Legionella polyplacis
Species-level Match
|
RISB1687 |
Polyplax serrata
Order: Phthiraptera
|
None
|
0.14% |
5.1
|
Candidatus Regiella
|
RISB1370 |
Sitobion avenae
Order: Hemiptera
|
Regiella infection decreased the intrinsic rate of increase (rm) of aphids at 25 °C and 28 °C. However, at 31 °C, the effect of Regiella on the rm varied depending on the aphid genotype and density. Thus, the negative effects of this endosymbiont on its host were environmentally dependent.
|
0.10% |
5.1
|
Candidatus Karelsulcia muelleri
Species-level Match
|
RISB1591 |
Philaenus spumarius
Order: Hemiptera
|
None
|
0.09% |
5.1
|
Listeria
|
RISB2308 |
Drosophila melanogaster
Order: Diptera
|
L. monocytogenes infection disrupts host energy metabolism by depleting energy stores (triglycerides and glycogen) and reducing metabolic pathway activity (beta-oxidation and glycolysis). The infection affects antioxidant defense by reducing uric acid levels and alters amino acid metabolism. These metabolic changes are accompanied by melanization, potentially linked to decreased tyrosine levels.
|
0.07% |
5.1
|
Zymobacter palmae
Species-level Match
|
RISB1324 |
Vespa mandarinia
Order: Hymenoptera
|
None
|
0.05% |
5.1
|
Treponema
|
RISB2377 |
termite
Order: Blattodea
|
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
|
0.14% |
5.0
|
Candidatus Regiella
|
RISB1819 |
Sitobion avenae
Order: Hemiptera
|
In R. insecticola-infected aphid lines, there were increases in plasticities for developmental times of first and second instar nymphs and for fecundity, showing novel functional roles of bacterial symbionts in plant-insect interactions.
|
0.10% |
4.8
|
Apibacter
|
RISB0603 |
Apis cerana
Order: Hymenoptera
|
The acquisition of genes for the degradation of the toxic monosaccharides potentiates Apibacter with the ability to utilize the pollen hydrolysis products, at the same time enabling monosaccharide detoxification for the host
|
0.09% |
4.6
|
Candidatus Regiella
|
RISB1363 |
Sitobion avenae
Order: Hemiptera
|
R. insecticola-infected aphids were more predated by the ladybird Hippodamia variegata irrespective of host plants and did not improve defences against coccinellid predators or metabolic rates on any host plants
|
0.10% |
4.3
|
Photorhabdus
|
RISB2532 |
Manduca sexta
Order: Lepidoptera
|
produces a small-molecule antibiotic (E)-1,3-dihydroxy-2-(isopropyl)-5-(2-phenylethenyl)benzene (ST) that also acts as an inhibitor of phenoloxidase (PO) in the insect host Manduca sexta.
|
0.22% |
4.0
|
Weissella
|
RISB1982 |
Blattella germanica
Order: Blattodea
|
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
|
0.05% |
3.9
|
Xanthomonas
|
RISB0498 |
Xylocopa appendiculata
Order: Hymenoptera
|
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
|
0.08% |
3.8
|
Shewanella
|
RISB1924 |
Anopheles gambiae
Order: Diptera
|
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
|
0.48% |
3.0
|
Photorhabdus
|
RISB2573 |
Manduca sexta
Order: Lepidoptera
|
the bacteria are symbiotic with entomopathogenic nematodes but become pathogenic on release from the nematode into the insect blood system
|
0.22% |
3.0
|
Weissella
|
RISB0641 |
Formica
Order: Hymenoptera
|
exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew
|
0.05% |
2.8
|
Bartonella
|
RISB1673 |
Apis mellifera
Order: Hymenoptera
|
a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream
|
0.22% |
2.8
|
Bacteroides
|
RISB0256 |
Leptocybe invasa
Order: Hymenoptera
|
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
|
0.19% |
2.5
|
Pseudonocardia
|
RISB0947 |
Acromyrmex
Order: Hymenoptera
|
Pseudonocardia in the Acromyrmex leaf-cutter ants as a protective partner against the entomopathogenic fungus Metarhizium
|
0.06% |
2.5
|
Bacteroides
|
RISB0090 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.19% |
2.3
|
Streptococcus
|
RISB2625 |
Galleria mellonella
Order: Lepidoptera
|
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
|
0.24% |
2.3
|
Pseudonocardia
|
RISB1218 |
Mycocepurus smithii
Order: Hymenoptera
|
produce secondary metabolites with antibiotic activity that protects the fungus garden against pathogens
|
0.06% |
2.1
|
Xenorhabdus
|
RISB1372 |
Spodoptera frugiperda
Order: Lepidoptera
|
the products of the symbiont gene cluster inhibit Spodoptera frugiperda phenoloxidase activity
|
0.23% |
2.1
|
Xanthomonas
|
RISB0217 |
Xylocopa appendiculata
Order: Hymenoptera
|
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
|
0.08% |
2.0
|
Streptococcus
|
RISB2624 |
Reticulitermes flavipes
Order: Blattodea
|
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
|
0.24% |
1.9
|
Xenorhabdus
|
RISB2270 |
Acyrthosiphon pisum
Order: Hemiptera
|
have the gene PIN1 encoding the protease inhibitor protein against aphids
|
0.23% |
1.7
|
Photorhabdus
|
RISB0532 |
Drosophila melanogaster
Order: Diptera
|
produces toxin complex (Tc) toxins as major virulence factors
|
0.22% |
1.4
|
Streptococcus
|
RISB2604 |
Homona magnanima
Order: Lepidoptera
|
influence the growth of Bacillus thuringiensis in the larvae
|
0.24% |
1.4
|
Paraclostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.15% |
1.2
|
Lysinibacillus
|
RISB1416 |
Psammotermes hypostoma
Order: Blattodea
|
isolates showed significant cellulolytic activity
|
0.11% |
1.1
|
Candidatus Profftia
|
RISB1664 |
Adelgidae
Order: Hemiptera
|
None
|
0.89% |
0.9
|
Flavobacterium
|
RISB0659 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.83% |
0.8
|
Priestia
|
RISB0839 |
Helicoverpa armigera
Order: Lepidoptera
|
producing amylase
|
0.10% |
0.4
|
Cupriavidus
|
RISB0694 |
Alydus tomentosus
Order: Hemiptera
|
None
|
0.16% |
0.2
|
Treponema
|
RISB0169 |
Reticulitermes flaviceps
Order: Blattodea
|
None
|
0.14% |
0.1
|
Vagococcus
|
RISB0042 |
Aldrichina grahami
Order: Diptera
|
None
|
0.12% |
0.1
|
Myroides
|
RISB0626 |
Musca altica
Order: Diptera
|
None
|
0.12% |
0.1
|
Apibacter
|
RISB0604 |
Apis cerana
Order: Hymenoptera
|
None
|
0.09% |
0.1
|
Sediminibacterium
|
RISB0244 |
Spodoptera frugiperda
Order: Lepidoptera
|
None
|
0.07% |
0.1
|
Halomonas
|
RISB1374 |
Bemisia tabaci
Order: Hemiptera
|
None
|
0.06% |
0.1
|
Paraburkholderia
|
RISB0125 |
Physopelta gutta
Order: Hemiptera
|
None
|
0.06% |
0.1
|
Neisseria
|
RISB0512 |
Plutella xylostella
Order: Lepidoptera
|
None
|
0.06% |
0.1
|
Weissella
|
RISB1566 |
Liometopum apiculatum
Order: Hymenoptera
|
None
|
0.05% |
0.1
|
Chroococcidiopsis
|
RISB0487 |
Ceratitis capitata
Order: Diptera
|
None
|
0.05% |
0.1
|
Helicobacter
|
RISB0662 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.04% |
0.0
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.