SRR26533679 - Trypetimorpha occidentalis

Basic Information

Run: SRR26533679

Assay Type: WGS

Bioproject: PRJNA1031153

Biosample: SAMN37926893

Bytes: 4120979316

Center Name: PIOTR

Sequencing Information

Instrument: Illumina HiSeq 2500

Library Layout: PAIRED

Library Selection: RANDOM

Platform: ILLUMINA

Geographic Information

Country: Bulgaria

Continent: Europe

Location Name: Bulgaria: Harsovo

Latitude/Longitude: 41.46533931 N 23.39195953 E

Sample Information

Host: Trypetimorpha occidentalis

Isolation: -

Biosample Model: Metagenome or environmental

Collection Date: 2018-07-20

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Candidatus Kirkpatrickella diaphorinae
RISB0222
Diaphorina citri
Order: Hemiptera
None
18.89%
33.9
Candidatus Karelsulcia muelleri
RISB1591
Philaenus spumarius
Order: Hemiptera
None
7.39%
22.4
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
0.95%
21.0
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
0.95%
20.7
Serratia marcescens
RISB0120
Nezara viridula
Order: Hemiptera
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies;transmitted bacteria impacted plant chemical defenses and were able to degrade toxic plant metabolites, aiding the shield bug in its nutrition
0.03%
20.0
Serratia symbiotica
RISB0576
Acyrthosiphon pisum
Order: Hemiptera
process of regression from winged to wingless morph was inhibited by Serratia symbiotica. The existence of the symbiont did not affect the body mass and fecundity of adult aphids, but it increased the body weight of nymphs and temporally increased the quantity of a primary symbiont, Buchnera aphidicola
0.02%
20.0
Candidatus Pantoea carbekii
RISB1046
Halyomorpha halys
Order: Hemiptera
provides its host with essential nutrients, vitamins, cofactors and protection of the most vulnerable stages of early development (1st nymphal stages). Pantoea carbekii is highly stress tolerant, especially once secreted to cover the eggs, by its unique biofilm-formation properties, securing host offspring survival
0.02%
20.0
Arsenophonus sp. aPb
RISB1047
Aphis gossypii
Order: Hemiptera
secondary symbiont reduction led to reduction of the total life span and intrinsic rate of natural increase as well as appearance of the deformed dead offspring. H. defensa and Arsenophonus contributed to the fitness of A. gossypii by enhancing its performance, but not through parasitoid resistance.
0.01%
20.0
Buchnera aphidicola
RISB0685
Acyrthosiphon pisum
Order: Hemiptera
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
0.95%
19.8
Arsenophonus sp. aPb
RISB1300
Aphis gossypii
Order: Hemiptera
Arsenophonus sp. can have different effects on its hosts, including obligate mutualism in blood-sucking insects, improving the performance of whiteflies, or through facultative mutualism by protecting psyllids against parasitoid attacks.
0.01%
19.8
Serratia marcescens
RISB0747
Rhodnius prolixus
Order: Hemiptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.03%
19.7
Candidatus Nasuia deltocephalinicola
RISB2283
Nephotettix cincticeps
Order: Hemiptera
Oral administration of tetracycline to nymphal N. cincticeps resulted in retarded growth, high mortality rates, and failure in adult emergence, suggesting important biological roles of the symbionts for the host insect
0.11%
19.5
Clostridium sp. OS1-26
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.09%
19.3
Clostridium sp. DL-VIII
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.06%
19.3
Clostridium sp. MB40-C1
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.04%
19.3
Lactococcus sp. NH2-7C
RISB2305
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.02%
19.2
Candidatus Carsonella ruddii
RISB0394
Cacopsylla pyricola
Order: Hemiptera
Carsonella produces most essential amino acids (EAAs) for C. pyricola, Psyllophila complements the genes missing in Carsonella for the tryptophan pathway and synthesizes some vitamins and carotenoids
0.22%
19.2
Candidatus Schneideria nysicola
RISB0872
Nysius sp.
Order: Hemiptera
synthesize four B vitamins(Pan, pantothenate;Fol, folate; Rib, riboflavin; Pyr, pyridoxine) and five Essential Amino Acids(Ile, isoleucine; Val, valine; Lys, lysine; Thr, threonine; Phe, phenylalanine)
0.01%
19.0
Candidatus Portiera aleyrodidarum
RISB1193
Bemisia tabaci
Order: Hemiptera
synthesizing essential amino acid (e.g. tryptophan, leucine and L-Isoleucine), Bemisia tabaci provides vital nutritional support for growth, development and reproduction
0.04%
18.4
Candidatus Gullanella endobia
RISB1885
Ferrisia virgata
Order: Hemiptera
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
0.01%
18.4
Enterococcus sp. DIV2402
RISB1490
Nezara viridula
Order: Hemiptera
help stinkbugs to feed on soybean developing seeds in spite of its chemical defenses by degrading isoflavonoids and deactivate soybean protease inhibitors
0.02%
18.1
Enterococcus sp. DIV0849a
RISB1490
Nezara viridula
Order: Hemiptera
help stinkbugs to feed on soybean developing seeds in spite of its chemical defenses by degrading isoflavonoids and deactivate soybean protease inhibitors
0.01%
18.1
Candidatus Profftella armatura
RISB2147
Diaphorina citri
Order: Hemiptera
a defensive symbiont presumably of an obligate nature, which encoded horizontally acquired genes for synthesizing a novel polyketide toxin, diaphorin
0.04%
18.0
Arsenophonus sp. aPb
RISB1048
Aphis gossypii
Order: Hemiptera
symbiont reduction led to reduction of the total life span and intrinsic rate of natural increase as well as appearance of the deformed dead offspring
0.01%
18.0
Candidatus Profftella armatura (Diaphorina cf. continua)
RISB2147
Diaphorina citri
Order: Hemiptera
a defensive symbiont presumably of an obligate nature, which encoded horizontally acquired genes for synthesizing a novel polyketide toxin, diaphorin
0.01%
18.0
Candidatus Profftella armatura
RISB2005
Diaphorina citri
Order: Hemiptera
produce proteins involved in polyketide biosynthesis,which were up-regulated in CLas(+) insects (associated with citrus greening disease)
0.04%
17.8
Candidatus Nasuia deltocephalinicola
RISB2282
Nephotettix cincticeps
Order: Hemiptera
With the antibiotic, nymphal growth was remarkably retarded, and a number of nymphs either died or failed to attain adulthood
0.11%
17.6
Spiroplasma ixodetis
RISB0842
Dactylopius coccus
Order: Hemiptera
use the T4SS to interact with the Dactylopius cells, which show a strong interaction and molecular signaling in the symbiosis
0.03%
17.5
Candidatus Tachikawaea gelatinosa
RISB2112
Urostylis westwoodii
Order: Hemiptera
the symbiont localizes to a specialized midgut region and supplies essential amino acids deficient in the host's diet
0.04%
17.4
Candidatus Nasuia deltocephalinicola
RISB0262
Maiestas dorsalis
Order: Hemiptera
are responsible for synthesizing two essential amino acids (histidine and methionine) and riboflavin (vitamin B2)
0.11%
17.4
Candidatus Portiera aleyrodidarum
RISB2289
Bemisia tabaci
Order: Hemiptera
encoding the capability to synthetize, or participate in the synthesis of, several amino acids and carotenoids,
0.04%
17.3
Pantoea ananatis
RISB0515
Laodelphax striatellus
Order: Hemiptera
pathogenic to the host insect, raises the possibility of using the Lstr strain as a biological agent
0.02%
17.0
Candidatus Portiera aleyrodidarum
RISB1973
Bemisia tabaci
Order: Hemiptera
a primary symbiont, which compensates for the deficient nutritional composition of its food sources
0.04%
17.0
Candidatus Ishikawella capsulata
RISB2368
Megacopta punctatissima
Order: Hemiptera
Microbe compensates for nutritional deficiency of host diet by supplying essential amino acids
0.01%
16.9
Lactococcus lactis
RISB0337
Riptortus pedestris
Order: Hemiptera
can be utilized as a novel probiotic which increase the survival rate of insects
0.12%
16.7
Enterococcus faecalis
RISB0336
Riptortus pedestris
Order: Hemiptera
can be utilized as a novel probiotic which increase the survival rate of insects
0.12%
16.7
Pseudomonas sp. CIP-10
RISB0700
Nilaparvata lugens
Order: Hemiptera
Pseudomonas sp. composition and abundance correlated with BPH survivability
0.18%
16.7
Frischella perrara
RISB2028
Diceroprocta semicincta
Order: Hemiptera
causes the formation of a scab-like structure on the gut epithelium of its host
0.01%
16.6
Xenorhabdus bovienii
RISB2270
Acyrthosiphon pisum
Order: Hemiptera
have the gene PIN1 encoding the protease inhibitor protein against aphids
0.02%
16.5
Candidatus Pantoea carbekii
RISB2115
Halyomorpha halys
Order: Hemiptera
the primary bacterial symbiont of H. halys
0.02%
15.9
Candidatus Ishikawella capsulata
RISB2543
Megacopta punctatissima
Order: Hemiptera
Enhance pest status of the insect host
0.01%
15.8
Rickettsia sp. Oklahoma-10
RISB0704
Aphis craccivora
Order: Hemiptera
facultative symbiont
0.01%
15.4
Escherichia coli
RISB0412
Melanaphis sacchari
Order: Hemiptera
None
0.28%
15.3
Candidatus Carsonella ruddii
RISB0748
Diaphorina citri
Order: Hemiptera
None
0.22%
15.2
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
0.21%
15.2
Candidatus Erwinia haradaeae
RISB1632
Lachninae
Order: Hemiptera
None
0.13%
15.1
Flavobacterium johnsoniae
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
0.08%
15.1
Staphylococcus xylosus
RISB0672
Melanaphis bambusae
Order: Hemiptera
None
0.05%
15.1
Candidatus Annandia adelgestsuga
RISB2207
Adelges tsugae
Order: Hemiptera
None
0.04%
15.0
Sphingobacterium multivorum
RISB0671
Melanaphis bambusae
Order: Hemiptera
None
0.03%
15.0
Rickettsia bellii
RISB1897
Bemisia tabaci
Order: Hemiptera
None
0.02%
15.0
Candidatus Pseudomonas adelgestsugas
RISB1666
Adelgidae
Order: Hemiptera
None
0.01%
15.0
Rickettsia canadensis
RISB1898
Bemisia tabaci
Order: Hemiptera
None
0.01%
15.0
Candidatus Annandia pinicola
RISB1661
Adelgidae
Order: Hemiptera
None
0.01%
15.0
Agrobacterium tumefaciens
RISB0650
Melanaphis bambusae
Order: Hemiptera
None
0.01%
15.0
Candidatus Palibaumannia cicadellinicola
RISB1594
Graphocephala coccinea
Order: Hemiptera
None
0.01%
15.0
Candidatus Steffania adelgidicola
RISB2278
Adelges nordmannianae/piceae
Order: Hemiptera
None
0.01%
15.0
Candidatus Regiella
RISB1370
Sitobion avenae
Order: Hemiptera
Regiella infection decreased the intrinsic rate of increase (rm) of aphids at 25 °C and 28 °C. However, at 31 °C, the effect of Regiella on the rm varied depending on the aphid genotype and density. Thus, the negative effects of this endosymbiont on its host were environmentally dependent.
0.01%
15.0
Burkholderia
RISB1327
Riptortus pedestris
Order: Hemiptera
fed with specific nutrients and also recycles host metabolic wastes in the insect gut, and in return, the bacterial symbiont provides the host with essential nutrients limited in the insect food, contributing to the rapid growth and enhanced reproduction of the bean bug host.
0.01%
15.0
Candidatus Cardinium
RISB0223
Bemisia tabaci
Order: Hemiptera
Cardinium could inhibit the defense response of the host plant and decrease the detoxification metabolism ability of the host whitefly, decrease the expression of detoxification metabolism genes, especially the uridine 5'-diphospho-glucuronyltransferase and P450 genes,
0.01%
15.0
Candidatus Regiella
RISB1819
Sitobion avenae
Order: Hemiptera
In R. insecticola-infected aphid lines, there were increases in plasticities for developmental times of first and second instar nymphs and for fecundity, showing novel functional roles of bacterial symbionts in plant-insect interactions.
0.01%
14.8
Burkholderia
RISB0402
Riptortus pedestris
Order: Hemiptera
symbiont colonization induces the development of the midgut crypts via finely regulating the enterocyte cell cycles, enabling it to stably and abundantly colonize the generated spacious crypts of the bean bug host
0.01%
14.3
Rickettsiella
RISB2479
Acyrthosiphon pisum
Order: Hemiptera
changes the insects’ body color from red to green in natural populations, the infection increased amounts of blue-green polycyclic quinones, whereas it had less of an effect on yellow-red carotenoid pigments
0.13%
14.3
Candidatus Regiella
RISB1363
Sitobion avenae
Order: Hemiptera
R. insecticola-infected aphids were more predated by the ladybird Hippodamia variegata irrespective of host plants and did not improve defences against coccinellid predators or metabolic rates on any host plants
0.01%
14.2
Burkholderia
RISB0221
Riptortus pedestris
Order: Hemiptera
symbiont modulates Kr-h1 expression to enhance ovarian development and egg production of R. pedestris by increasing the biosynthesis of the two reproduction-associated proteins, hexamerin-α and vitellogenin
0.01%
14.1
Wolbachia
RISB1444
Laodelphax striatellus
Order: Hemiptera
Wolbachia-infected host embryonic development genes revealed Ddx1 mRNAs, which is required for host viability and in the germ line, accumulated in the posterior region of 3-day-old embryos
0.32%
14.1
Wolbachia
RISB1539
Cimex lectularius
Order: Hemiptera
wCle provisions the bed bug with B vitamins.It is likely that because of wCle’s nutritional contribution to the bed bug, its titer increases in relation to bed bug growth and development.
0.32%
14.1
Rickettsiella
RISB2262
Acyrthosiphon pisum
Order: Hemiptera
against this entomopathogen Pandora neoaphidis, reduce mortality and also decrease fungal sporulation on dead aphids which may help protect nearby genetically identical insects
0.13%
13.7
Sodalis
RISB0122
Nezara viridula
Order: Hemiptera
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies.
0.02%
13.6
Sodalis
RISB1888
Pseudococcus longispinus
Order: Hemiptera
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
0.02%
13.4
Rickettsiella
RISB1739
Acyrthosiphon pisum
Order: Hemiptera
in an experiment with a single-injected isolate of Rickettsiella sp. wasps were also attracted to plants fed on by aphids without secondary symbionts
0.13%
13.1
Sodalis
RISB0998
Bactericera trigonica
Order: Hemiptera
Sodalis infecting B. trigonica was more closely related to symbionts infecting weevils, stink bugs and tsetse flies than to those from psyllid species
0.02%
13.0
Wolbachia
RISB0491
Cimex hemipterus
Order: Hemiptera
the disruption of the abundant Wolbachia could be related to the enhanced susceptibility towards the insecticides
0.32%
12.6
Yersinia
RISB0492
Cimex hemipterus
Order: Hemiptera
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
0.13%
12.6
Liberibacter
RISB2310
Bactericerca cockerelli
Order: Hemiptera
manipulate plant signaling and defensive responses, suppress accumulation of defense transcripts like JA and SA
0.03%
12.3
Candidatus Cardinium
RISB2290
Sogatella furcifera
Order: Hemiptera
dual infection with Cardinium and Wolbachia induced strong cytoplasmic incompatibility (CI) in a single host
0.01%
12.2
Candidatus Cardinium
RISB2296
Sogatella furcifera
Order: Hemiptera
could shorten the developmental time of nymphs and had no effect on the fecundity of females
0.01%
11.9
Candidatus Zinderia
RISB2451
Clastoptera arizonana
Order: Hemiptera
Zinderia had gene homologs for the production of tryptophan, methionine, and histidine
0.04%
11.8
Liberibacter
RISB2524
Bactericera cockerelli
Order: Hemiptera
Reduced expression of plant defensive gene in tomato probably for psyllid success
0.03%
11.7
Dickeya
RISB1086
Rhodnius prolixus
Order: Hemiptera
supply enzymatic biosynthesis of B-complex vitamins
0.01%
11.0
Liberibacter
RISB2333
Cacopsylla pyri
Order: Hemiptera
behaves as an endophyte rather than a pathogen
0.03%
11.0
Bacillus thuringiensis
RISB2177
Armadillidae
Order: Isopoda
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.54%
10.5
Bacillus cereus
RISB2161
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.42%
10.4
Candidatus Zinderia
RISB1640
Clastoptera arizonana
Order: Hemiptera
Nitrogen-Fixing
0.04%
10.3
Helicobacter
RISB0662
Melanaphis bambusae
Order: Hemiptera
None
0.19%
10.2
Bacillus thuringiensis
RISB0109
Tuta absoluta
Order: Lepidoptera
Individual exposure of B. thuringiensis isolates to P. absoluta revealed high susceptibility of the pest and could potentially be used to develop effective, safe and affordable microbial pesticides for the management of P. absoluta.
0.54%
10.2
Klebsiella pneumoniae
RISB2185
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.13%
10.1
Lactococcus lactis
RISB0131
Ceratitis capitata
Order: Diptera
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The  colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
0.12%
10.1
Metabacillus
RISB0902
Myzus persicae
Order: Hemiptera
None
0.10%
10.1
Paenibacillus polymyxa
RISB2195
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.07%
10.1
Aeromonas
RISB2063
Sitobion miscanthi
Order: Hemiptera
None
0.07%
10.1
Candidatus Phytoplasma
RISB1620
Cacopsylla pyricola
Order: Hemiptera
None
0.07%
10.1
Paraburkholderia
RISB0125
Physopelta gutta
Order: Hemiptera
None
0.06%
10.1
Listeria monocytogenes
RISB2308
Drosophila melanogaster
Order: Diptera
L. monocytogenes infection disrupts host energy metabolism by depleting energy stores (triglycerides and glycogen) and reducing metabolic pathway activity (beta-oxidation and glycolysis). The infection affects antioxidant defense by reducing uric acid levels and alters amino acid metabolism. These metabolic changes are accompanied by melanization, potentially linked to decreased tyrosine levels.
0.05%
10.1
Candidatus Profftia
RISB1664
Adelgidae
Order: Hemiptera
None
0.05%
10.1
Candidatus Vallotia
RISB1665
Adelgidae
Order: Hemiptera
None
0.04%
10.0
Francisella tularensis
RISB1907
Bombyx mori
Order: Lepidoptera
After infection with F. tularensis, the induction of melanization and nodulation, which are immune responses to bacterial infection, were inhibited in silkworms. Pre-inoculation of silkworms with F. tularensis enhanced the expression of antimicrobial peptides and resistance to infection by pathogenic bacteria.
0.03%
10.0
Klebsiella oxytoca
RISB0130
Ceratitis capitata
Order: Diptera
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The  colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
0.02%
10.0
Gilliamella apicola
RISB0102
Apis mellifera
Order: Hymenoptera
Gilliamella apicola carries the gene for the desaturase FADS2, which is able to metabolize polyunsaturated fatty acids from pollen and synthesize endocannabinoid, a lipogenic neuroactive substance, thereby modulating reward learning and memory in honeybees.
0.02%
10.0
Achromobacter
RISB0383
Aphis gossypii
Order: Hemiptera
None
0.02%
10.0
Staphylococcus gallinarum
RISB0945
Callosobruchus maculatus
Order: Coleoptera
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
0.01%
10.0
Cupriavidus
RISB0694
Alydus tomentosus
Order: Hemiptera
None
0.01%
10.0
Weeksella
RISB1265
Rheumatobates bergrothi
Order: Hemiptera
None
0.01%
10.0
Pseudomonas sp. CIP-10
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.18%
10.0
Treponema primitia
RISB2377
termite
Order: Blattodea
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
0.01%
9.9
Acinetobacter sp. Marseille-Q1620
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.01%
9.7
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
0.28%
9.6
Stenotrophomonas maltophilia
RISB1122
Bombyx mori
Order: Lepidoptera
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
0.17%
9.2
Streptomyces sp. T12
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.16%
9.1
Mammaliicoccus sciuri
RISB0075
Bombyx mori
Order: Lepidoptera
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
0.11%
9.1
Staphylococcus xylosus
RISB2497
Anticarsia gemmatalis
Order: Lepidoptera
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
0.05%
9.0
Streptomyces sp. SJL17-4
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.04%
9.0
Streptomyces sp. S399
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.01%
9.0
Klebsiella oxytoca
RISB2565
Acrolepiopsis assectella
Order: Lepidoptera
Klebsiella oxytoca and Bacillus spp. produce the volatile alkyl disulfides present in the fecal pellets, which serve as kairomones to attract the parasitoid Diadromus pulchellus to the moth host
0.02%
8.9
Acinetobacter pittii
RISB1977
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
0.08%
8.9
Acinetobacter sp. Marseille-Q1620
RISB1978
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
0.01%
8.8
Weissella cibaria
RISB1982
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
0.01%
8.8
Enterobacter ludwigii
RISB1543
Helicoverpa zea
Order: Lepidoptera
two immunity-related genes glucose oxidase (GOX) and lysozyme (LYZ) were more highly expressed in both salivary glands and midguts compared with MgCl2 solution-treated caterpillars
0.01%
8.6
Citrobacter sp. CRE-46
RISB1503
Bactrocera dorsalis
Order: Diptera
Pesticide-degrading bacteria were frequently detected from pesticide-resistant insects. Susceptible insects became resistant after inoculation of the pesticide-degrading symbiont
0.01%
8.6
Blattabacterium cuenoti
RISB0133
Panesthiinae
Order: Blattodea
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
0.47%
8.4
Spiroplasma sp. TIUS-1
RISB1353
Cephus cinctus
Order: Hymenoptera
The bacterium also encoded biosynthetic pathways for essential vitamins B2, B3, and B9. We identified putative Spiroplasma virulence genes: cardiolipin and chitinase.
0.05%
8.4
Lactobacillus sp. PV034
RISB0292
Lymantria dispar asiatica
Order: Lepidoptera
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
0.01%
8.4
Sphingobacterium sp. UDSM-2020
RISB2227
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.02%
8.4
Sphingobacterium sp. SRCM116780
RISB2227
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.01%
8.4
Spiroplasma sp. SV19
RISB1353
Cephus cinctus
Order: Hymenoptera
The bacterium also encoded biosynthetic pathways for essential vitamins B2, B3, and B9. We identified putative Spiroplasma virulence genes: cardiolipin and chitinase.
0.01%
8.3
Morganella morganii
RISB0772
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.03%
8.3
Paenibacillus sp. FSL E2-0201
RISB0774
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.03%
8.3
Paenibacillus sp. RC67
RISB0774
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.01%
8.3
Wigglesworthia glossinidia
RISB0369
Glossina morsitans
Order: Diptera
symbiont-derived factors, likely B vitamins, are critical for the proper function of both lipid biosynthesis and lipolysis to maintain tsetse fly fecundity
0.01%
8.1
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.28%
8.0
Morganella morganii
RISB0008
Phormia regina
Order: Diptera
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.03%
8.0
Citrobacter freundii
RISB0517
Leptinotarsa decemlineata
Order: Coleoptera
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
0.06%
8.0
Stenotrophomonas maltophilia
RISB1227
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.17%
7.9
Morganella morganii
RISB1867
Costelytra zealandica
Order: Coleoptera
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
0.03%
7.9
Citrobacter freundii
RISB0127
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.06%
7.8
Weissella cibaria
RISB0641
Formica
Order: Hymenoptera
exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew
0.01%
7.8
Proteus vulgaris
RISB0001
Leptinotarsa decemlineata
Order: Coleoptera
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
0.05%
7.8
Enterobacter ludwigii
RISB1223
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.01%
7.7
Sphingomonas sp. AAP5
RISB0134
Spodoptera frugiperda
Order: Lepidoptera
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
1.00%
7.6
Carnobacterium maltaromaticum
RISB1693
Plutella xylostella
Order: Lepidoptera
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
0.03%
7.5
Enterobacter cloacae
RISB1699
Plutella xylostella
Order: Lepidoptera
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
0.01%
7.5
Psychrobacter sp. M13
RISB1773
Calliphoridae
Order: Diptera
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
0.01%
7.5
Sphingomonas sp. HMP6
RISB0134
Spodoptera frugiperda
Order: Lepidoptera
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
0.62%
7.3
Proteus sp. ZN5
RISB2315
Aedes aegypti
Order: Diptera
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
0.01%
7.1
Apilactobacillus kunkeei
RISB0475
Apis mellifera
Order: Hymenoptera
A. kunkeei alleviated acetamiprid-induced symbiotic microbiota dysregulation and mortality in honeybees
0.01%
7.1
Wigglesworthia glossinidia
RISB1786
Glossina morsitans
Order: Diptera
Synthesis of a large number of B vitamins, to supplement the host nutritional deficiencies of the diet
0.01%
7.1
Stenotrophomonas maltophilia
RISB1141
Hermetia illucens
Order: Diptera
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
0.17%
7.0
Snodgrassella alvi
RISB1423
Bombus spp.
Order: Hymenoptera
The bumble bee microbiome slightly increases survivorship when the host is exposed to selenate
0.02%
6.9
Paludibacter propionicigenes
RISB2055
Odontotaenius disjunctus
Order: Coleoptera
microbial fixation of nitrogen that is important for this beetle to subsist on woody biomass
0.02%
6.9
Leclercia adecarboxylata
RISB1757
Spodoptera frugiperda
Order: Lepidoptera
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
0.02%
6.8
Sphingomonas sp. QA11
RISB0134
Spodoptera frugiperda
Order: Lepidoptera
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
0.11%
6.8
Blattabacterium sp. (Nauphoeta cinerea)
RISB1534
Periplaneta fuliginosa
Order: Blattodea
involved in uric acid degradation, nitrogen assimilation and nutrient provisioning
0.01%
6.7
Carnobacterium maltaromaticum
RISB1692
Plutella xylostella
Order: Lepidoptera
participate in the synthesis of host lacking amino acids histidine and threonine
0.03%
6.6
Candidatus Westeberhardia cardiocondylae
RISB1794
Cardiocondyla obscurior
Order: Hymenoptera
Contributes to cuticle formation and is responsible for host invasive success
0.02%
6.6
Blattabacterium cuenoti
RISB0518
Cryptocercus punctulatus
Order: Blattodea
collaborative arginine biosynthesis
0.47%
6.2
Leclercia adecarboxylata
RISB1758
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.02%
6.2
Wigglesworthia glossinidia
RISB2577
Glossina brevipalpis
Order: Diptera
provide its tsetse host with metabolites such as vitamins
0.01%
6.2
Candidatus Riesia pediculicola
RISB2452
Pediculus humanus humanus
Order: Phthiraptera
supplement body lice nutritionally deficient blood diet
0.01%
6.1
Candidatus Westeberhardia cardiocondylae
RISB1795
Cardiocondyla obscurior
Order: Hymenoptera
a contribution of Westeberhardia to cuticle formation
0.02%
6.1
Lactiplantibacillus plantarum
RISB0674
Drosophila melanogaster
Order: Diptera
could effectively inhibit fungal spore germinations
0.05%
6.1
Proteus vulgaris
RISB2460
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
0.05%
6.1
Lysinibacillus fusiformis
RISB1417
Psammotermes hypostoma
Order: Blattodea
isolates showed significant cellulolytic activity
0.06%
6.0
Providencia rettgeri
RISB1001
Anastrepha obliqua
Order: Diptera
improve the sexual competitiveness of males
0.07%
5.9
Paludibacter propionicigenes
RISB2056
Odontotaenius disjunctus
Order: Coleoptera
plays an important role in nitrogen fixation
0.02%
5.9
Carnobacterium maltaromaticum
RISB1691
Plutella xylostella
Order: Lepidoptera
activity of cellulose and hemicellulose
0.03%
5.8
Providencia sp. R33
RISB1574
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.01%
5.7
Providencia sp. R33
RISB0984
Nasonia vitripennis
Order: Hymenoptera
may highly associated with diapause
0.01%
5.7
Chryseobacterium sp. CY350
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.03%
5.6
Chryseobacterium sp. POE27
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.02%
5.6
Chryseobacterium sp. Chry.R1
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.01%
5.6
Bombilactobacillus bombi
RISB0617
Spodoptera frugiperda
Order: Lepidoptera
degrade amygdalin
0.01%
5.4
Lysinibacillus fusiformis
RISB1066
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.06%
5.3
Candidatus Legionella polyplacis
RISB1687
Polyplax serrata
Order: Phthiraptera
None
0.06%
5.1
Lactiplantibacillus plantarum
RISB0608
Drosophila melanogaster
Order: Diptera
None
0.05%
5.1
Gilliamella apicola
RISB1945
Apis cerana
Order: Hymenoptera
None
0.02%
5.0
Snodgrassella alvi
RISB1947
Apis cerana
Order: Hymenoptera
None
0.02%
5.0
Lactobacillus apis
RISB1556
Apis florea
Order: Hymenoptera
None
0.01%
5.0
Zymomonas mobilis
RISB1326
Vespa mandarinia
Order: Hymenoptera
None
0.01%
5.0
Bosea sp. Tri-49
RISB1702
Phlebotomus papatasi
Order: Diptera
None
0.01%
5.0
Candidatus Megaera polyxenophila
RISB0587
Multiple species
Order: None
None
0.01%
5.0
Pectobacterium carotovorum
RISB1772
Muscidae
Order: Diptera
None
0.01%
5.0
Acetobacter
RISB1865
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.01%
5.0
Apibacter
RISB0603
Apis cerana
Order: Hymenoptera
The acquisition of genes for the degradation of the toxic monosaccharides potentiates Apibacter with the ability to utilize the pollen hydrolysis products, at the same time enabling monosaccharide detoxification for the host
0.07%
4.6
Sphingobium
RISB1837
Dendroctonus valens
Order: Coleoptera
It can trongly degrade naringenin, and pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and facilitate naringenin biodegradation by the microbiotas.
0.39%
4.4
Novosphingobium
RISB1837
Dendroctonus valens
Order: Coleoptera
It can trongly degrade naringenin, and pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and facilitate naringenin biodegradation by the microbiotas.
0.06%
4.1
Photorhabdus
RISB2532
Manduca sexta
Order: Lepidoptera
produces a small-molecule antibiotic (E)-1,3-dihydroxy-2-(isopropyl)-5-(2-phenylethenyl)benzene (ST) that also acts as an inhibitor of phenoloxidase (PO) in the insect host Manduca sexta.
0.05%
3.8
Xanthomonas
RISB0498
Xylocopa appendiculata
Order: Hymenoptera
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
0.01%
3.8
Acetobacter
RISB0961
Drosophila melanogaster
Order: Diptera
The exist of Acetobacter had a balancing effect on food ingestion when carbohydrate levels were high in the warmer months, stabilizing fitness components of flies across the year.
0.01%
3.6
Methylobacterium
RISB1440
Lutzomyia evansi
Order: Diptera
Methylobacterium can be important in several physiological and metabolic processes in Lu. evansi, which suggests that interactions could occur with Leishmania parasite
0.02%
3.4
Raoultella
RISB2226
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.01%
3.4
Methylobacter
RISB1440
Lutzomyia evansi
Order: Diptera
Methylobacterium can be important in several physiological and metabolic processes in Lu. evansi, which suggests that interactions could occur with Leishmania parasite
0.01%
3.4
Candidatus Blochmanniella
RISB2542
Camponotus
Order: Hymenoptera
Blochmannia provide essential amino acids to its host,Camponotus floridanus, and that it may also play a role in nitrogen recycling via its functional urease
0.15%
3.3
Candidatus Blochmanniella
RISB1827
Camponotus floridanus
Order: Hymenoptera
a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission
0.15%
3.2
Ignatzschineria
RISB0562
Chrysomya megacephala
Order: Diptera
Ignatzschineria indica is a Gram-negative bacterium commonly associated with maggot infestation and myiasis, a probable marker for myiasis diagnosis
0.01%
3.0
Candidatus Blochmanniella
RISB2448
Camponotus floridanus
Order: Hymenoptera
nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling
0.15%
2.9
Photorhabdus
RISB2573
Manduca sexta
Order: Lepidoptera
the bacteria are symbiotic with entomopathogenic nematodes but become pathogenic on release from the nematode into the insect blood system
0.05%
2.8
Bacteroides
RISB0256
Leptocybe invasa
Order: Hymenoptera
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
0.48%
2.8
Shewanella
RISB1924
Anopheles gambiae
Order: Diptera
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
0.20%
2.7
Bartonella
RISB1673
Apis mellifera
Order: Hymenoptera
a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream
0.10%
2.7
Streptococcus
RISB2625
Galleria mellonella
Order: Lepidoptera
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
0.60%
2.6
Bacteroides
RISB0090
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.48%
2.6
Bacteroides
RISB1183
Oryzaephilus surinamensis
Order: Coleoptera
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
0.48%
2.5
Acetobacter
RISB0184
Drosophila melanogaster
Order: Diptera
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
0.01%
2.3
Streptococcus
RISB2624
Reticulitermes flavipes
Order: Blattodea
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
0.60%
2.2
Blautia
RISB0091
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.07%
2.2
Coprococcus
RISB0092
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.01%
2.1
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.79%
2.1
Nitrosospira
RISB0869
Sirex noctilio
Order: Hymenoptera
might be involved in degrading organic matter and fixing nitrogen occurred exclusively in the larval gut
0.02%
2.1
Bradyrhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
0.48%
2.0
Xanthomonas
RISB0217
Xylocopa appendiculata
Order: Hymenoptera
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
0.01%
2.0
Streptococcus
RISB2604
Homona magnanima
Order: Lepidoptera
influence the growth of Bacillus thuringiensis in the larvae
0.60%
1.8
Corynebacterium
RISB0363
Pagiophloeus tsushimanus
Order: Coleoptera
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
0.02%
1.8
Lachnospira
RISB2110
Blattella germanica
Order: Blattodea
Hydrolyze polysaccharide; assist digestion; synthesize acetate, propionate, and butyrate
0.01%
1.8
Nostoc
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.29%
1.7
Corynebacterium
RISB0531
Helicoverpa armigera
Order: Lepidoptera
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
0.02%
1.7
Rhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
0.09%
1.7
Candidatus Nardonella
RISB2449
Euscepes postfasciatus
Order: Coleoptera
endosymbiont is involved in normal growth and development of the host weevil
0.06%
1.6
Candidatus Nardonella
RISB1931
Lissorhoptrus oryzophilus
Order: Coleoptera
might be not playing critical roles in the reproduction of L. oryzophilus
0.06%
1.5
Leuconostoc
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.09%
1.5
Kosakonia
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.01%
1.4
Candidatus Mesenet
RISB1785
Brontispa longissima
Order: Coleoptera
induced complete Cytoplasmic incompatibility (CI) (100% mortality)
0.04%
1.4
Raoultella
RISB1672
Spodoptera frugiperda
Order: Lepidoptera
downregulated POX but upregulated trypsin PI in this plant species
0.01%
1.3
Variovorax
RISB2153
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.01%
1.3
Massilia
RISB2151
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.01%
1.3
Dysgonomonas
RISB1235
Hermetia illucens
Order: Diptera
provides the tools for degrading of a broad range of substrates
0.05%
1.3
Paraclostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.22%
1.3
Photorhabdus
RISB0532
Drosophila melanogaster
Order: Diptera
produces toxin complex (Tc) toxins as major virulence factors
0.05%
1.3
Actinomyces
RISB1234
Hermetia illucens
Order: Diptera
provides the tools for degrading of a broad range of substrates
0.01%
1.3
Raoultella
RISB1007
Monochamus alternatus
Order: Coleoptera
may help M. alternatus degrade cellulose and pinene
0.01%
1.0
Cronobacter
RISB0247
Tenebrio molitor
Order: Coleoptera
may be indirectly involved in the digestion of PE
0.01%
1.0
Aeromonas
RISB2456
Bombyx mori
Order: Lepidoptera
able to utilize the CMcellulose and xylan
0.07%
0.9
Candidatus Nardonella
RISB1668
Multiple species
Order: Coleoptera
Possibly tyrosine precursor provisioning
0.06%
0.9
Corynebacterium
RISB2360
Bombyx mori
Order: Lepidoptera
producing lipase in a gut environment
0.02%
0.8
Nocardioides
RISB1914
Hyles euphorbiae
Order: Lepidoptera
able to degrade alkaloids and/or latex
0.01%
0.8
Gordonia
RISB1912
Hyles euphorbiae
Order: Lepidoptera
able to degrade alkaloids and/or latex
0.00%
0.8
Methylobacterium
RISB2053
Atractomorpha sinensis
Order: Orthoptera
associated with cellulolytic enzymes
0.02%
0.7
Methylobacter
RISB2053
Atractomorpha sinensis
Order: Orthoptera
associated with cellulolytic enzymes
0.01%
0.7
Cedecea
RISB1570
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.01%
0.7
Sphingobium
RISB1880
Aedes aegypti
Order: Diptera
gut microbiome
0.39%
0.7
Aeromonas
RISB2086
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.07%
0.6
Turicibacter
RISB0451
Odontotaenius disjunctus
Order: Coleoptera
degrading  ellulose and xylan
0.05%
0.6
Priestia
RISB0839
Helicoverpa armigera
Order: Lepidoptera
producing amylase
0.28%
0.6
Peribacillus
RISB1877
Aedes aegypti
Order: Diptera
gut microbiome
0.25%
0.5
Kosakonia
RISB1155
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.01%
0.4
Methylobacterium
RISB2340
Saturniidae
Order: Lepidoptera
Nitrogen fixation
0.02%
0.4
Methylobacter
RISB2340
Saturniidae
Order: Lepidoptera
Nitrogen fixation
0.01%
0.4
Achromobacter
RISB1869
Aedes aegypti
Order: Diptera
gut microbiome
0.02%
0.3
Vagococcus
RISB0042
Aldrichina grahami
Order: Diptera
None
0.18%
0.2
Yersinia
RISB0407
Anaphes nitens
Order: Hymenoptera
None
0.13%
0.1
Neisseria
RISB0512
Plutella xylostella
Order: Lepidoptera
None
0.13%
0.1
Myroides
RISB0626
Musca altica
Order: Diptera
None
0.13%
0.1
Apibacter
RISB0604
Apis cerana
Order: Hymenoptera
None
0.07%
0.1
Dysgonomonas
RISB1481
Brachinus elongatulus
Order: Coleoptera
None
0.05%
0.1
Candidatus Arthromitus
RISB2613
Multiple species
Order: None
None
0.05%
0.1
Sediminibacterium
RISB0244
Spodoptera frugiperda
Order: Lepidoptera
None
0.04%
0.0
Brevundimonas
RISB1703
Phlebotomus papatasi
Order: Diptera
None
0.02%
0.0
Variovorax
RISB1712
Phlebotomus papatasi
Order: Diptera
None
0.01%
0.0
Cedecea
RISB0504
Plutella xylostella
Order: Lepidoptera
None
0.01%
0.0
Chroococcidiopsis
RISB0487
Ceratitis capitata
Order: Diptera
None
0.01%
0.0

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR26533679
3.8 GB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table