SRR26511508 - Thaumetopoea processionea
Basic Information
Run: SRR26511508
Assay Type: WGS
Bioproject: PRJNA1010135
Biosample: SAMN37977079
Bytes: 2144514084
Center Name: JULIUS KUEHN-INSTITUT
Sequencing Information
Instrument: MinION
Library Layout: SINGLE
Library Selection: RANDOM
Platform: OXFORD_NANOPORE
Geographic Information
Country: Germany
Continent: Europe
Location Name: Germany: Waldlaubersheim\, Rhineland-Palatinate
Latitude/Longitude: -
Sample Information
Host: Thaumetopoea processionea
Isolation: bioassay control larva 1
Biosample Model: Metagenome or environmental
Collection Date: 2023-05-13
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Escherichia coli
Species-level Match
Host Order Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
50.94% |
70.3
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB2120 |
Galleria mellonella
Order: Lepidoptera
|
mediate trans-generational immune priming
|
50.94% |
66.8
|
Escherichia coli
Species-level Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
50.94% |
58.7
|
Bacillus thuringiensis
Species-level Match
Host Order Match
|
RISB0109 |
Tuta absoluta
Order: Lepidoptera
|
Individual exposure of B. thuringiensis isolates to P. absoluta revealed high susceptibility of the pest and could potentially be used to develop effective, safe and affordable microbial pesticides for the management of P. absoluta.
|
2.74% |
22.4
|
Bacillus sp. 7D3
Species-level Match
Host Order Match
|
RISB2181 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
2.14% |
22.1
|
Bacillus thuringiensis
Species-level Match
Host Order Match
|
RISB1863 |
Spodoptera littoralis
Order: Lepidoptera
|
a widely used bacterial entomopathogen producing insecticidal toxins, some of which are expressed in insect-resistant transgenic crops
|
2.74% |
20.4
|
Klebsiella pneumoniae
Species-level Match
Host Order Match
|
RISB2185 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.26% |
20.3
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1122 |
Bombyx mori
Order: Lepidoptera
|
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
|
0.30% |
19.3
|
Staphylococcus xylosus
Species-level Match
Host Order Match
|
RISB2497 |
Anticarsia gemmatalis
Order: Lepidoptera
|
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
|
0.22% |
19.2
|
Mammaliicoccus sciuri
Species-level Match
Host Order Match
|
RISB0075 |
Bombyx mori
Order: Lepidoptera
|
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
|
0.20% |
19.2
|
Wolbachia
Host Order Match
|
RISB0263 |
Homona magnanima
Order: Lepidoptera
|
To achieve Male killing (MK), Wolbachia impaired the host dosage compensation system and triggered abnormal apoptosis in male embryos.Also, disrupted the sex-determination cascade of males by inducing female-type splice variants of doublesex (dsx), a downstream regulator of the sex-determining gene cascade.
|
2.85% |
17.9
|
Wolbachia
Host Order Match
|
RISB2547 |
Eurema hecabe
Order: Lepidoptera
|
the butterfly Eurema hecabe is infected with two different strains (wHecCI2 and wHecFem2) of the bacterial endosymbiont Wolbachia, genetic males are transformed into functional females, resulting in production of all-female broods.
|
2.85% |
17.5
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB0727 |
Bombyx mori
Order: Lepidoptera
|
with anti-N. bombycis activity might play an important role in protecting silkworms from microsporidia
|
0.39% |
17.4
|
Sphingomonas sp. IC081
Species-level Match
Host Order Match
|
RISB0134 |
Spodoptera frugiperda
Order: Lepidoptera
|
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
|
0.47% |
17.1
|
Staphylococcus xylosus
Species-level Match
Host Order Match
|
RISB2247 |
Anticarsia gemmatalis
Order: Lepidoptera
|
mitigation of the negative effects of proteinase inhibitors produced by the host plant
|
0.22% |
16.9
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1123 |
Bombyx mori
Order: Lepidoptera
|
confer a significant fitness advantage via nutritional (amino acids) upgrading
|
0.30% |
16.9
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB0026 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.39% |
16.5
|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB0286 |
Diatraea saccharalis
Order: Lepidoptera
|
associated with cellulose degradation
|
0.67% |
16.4
|
Staphylococcus xylosus
Species-level Match
Host Order Match
|
RISB2246 |
Anticarsia gemmatalis
Order: Lepidoptera
|
Against plant-derived protease inhibitor; pest control
|
0.22% |
16.3
|
Klebsiella pneumoniae
Species-level Match
Host Order Match
|
RISB2459 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
0.26% |
16.3
|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB0785 |
Samia ricini
Order: Lepidoptera
|
cellulolytic activity
|
0.67% |
16.1
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1998 |
Diatraea saccharalis
Order: Lepidoptera
|
possess cellulose degrading activity
|
0.30% |
16.0
|
Wolbachia
Host Order Match
|
RISB2473 |
Phyllonorycter blancardella
Order: Lepidoptera
|
P. blancardella relies on bacterial endosymbionts (possibly Wolbachia) to manipulate the physiology of its host plant, resulting in the green-island phenotype
|
2.85% |
16.0
|
Buchnera aphidicola
Species-level Match
Host Order Match
|
RISB0290 |
Helicoverpa armigera
Order: Lepidoptera
|
None
|
1.00% |
16.0
|
Klebsiella pneumoniae
Species-level Match
Host Order Match
|
RISB1994 |
Diatraea saccharalis
Order: Lepidoptera
|
possess cellulose degrading activity
|
0.26% |
16.0
|
Pseudomonas sp. HOU2
Species-level Match
Host Order Match
|
RISB0286 |
Diatraea saccharalis
Order: Lepidoptera
|
associated with cellulose degradation
|
0.18% |
15.9
|
Francisella
Host Order Match
|
RISB1907 |
Bombyx mori
Order: Lepidoptera
|
After infection with F. tularensis, the induction of melanization and nodulation, which are immune responses to bacterial infection, were inhibited in silkworms. Pre-inoculation of silkworms with F. tularensis enhanced the expression of antimicrobial peptides and resistance to infection by pathogenic bacteria.
|
0.27% |
15.3
|
Acinetobacter
Host Order Match
|
RISB1500 |
Lymantria dispar
Order: Lepidoptera
|
Bacteria isolated from a host plant had a glycoside-degrading activity, which enhanced growth of the moth when larvae were fed on a toxin-containing diet
|
0.80% |
13.9
|
Acinetobacter
Host Order Match
|
RISB0390 |
Chilo suppressalis
Order: Lepidoptera
|
interfere with plant anti-herbivore defense and avoid fully activating the JA-regulated antiherbivore defenses of rice plants
|
0.80% |
13.3
|
Acinetobacter
Host Order Match
|
RISB0731 |
Lymantria dispar
Order: Lepidoptera
|
Condensed tannins improved growth of Acinetobacter sp. by 15% (by measuring the optical density)
|
0.80% |
12.7
|
Streptococcus
Host Order Match
|
RISB2625 |
Galleria mellonella
Order: Lepidoptera
|
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
|
0.54% |
12.6
|
Bacteroides
Host Order Match
|
RISB0090 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.42% |
12.5
|
Streptococcus
Host Order Match
|
RISB2604 |
Homona magnanima
Order: Lepidoptera
|
influence the growth of Bacillus thuringiensis in the larvae
|
0.54% |
11.7
|
Paraclostridium
Host Order Match
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.47% |
11.5
|
Proteus
Host Order Match
|
RISB2460 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
0.28% |
11.3
|
Buchnera aphidicola
Species-level Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
1.00% |
11.0
|
Priestia
Host Order Match
|
RISB0839 |
Helicoverpa armigera
Order: Lepidoptera
|
producing amylase
|
0.54% |
10.9
|
Buchnera aphidicola
Species-level Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
1.00% |
10.8
|
Lactococcus lactis
Species-level Match
|
RISB0131 |
Ceratitis capitata
Order: Diptera
|
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
|
0.52% |
10.5
|
Streptomyces sp. T12
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
1.55% |
10.5
|
Streptomyces sp. T12
Species-level Match
|
RISB2334 |
Sirex noctilio
Order: Hymenoptera
|
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
|
1.55% |
10.3
|
Clostridium sp. DL-VIII
Species-level Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.23% |
9.5
|
Streptomyces sp. SJL17-4
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.30% |
9.3
|
Lactococcus lactis
Species-level Match
|
RISB0967 |
Oulema melanopus
Order: Coleoptera
|
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
|
0.52% |
9.1
|
Blattabacterium cuenoti
Species-level Match
|
RISB0133 |
Panesthiinae
Order: Blattodea
|
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
|
0.74% |
8.7
|
Lactococcus lactis
Species-level Match
|
RISB0113 |
Bactrocera dorsalis
Order: Diptera
|
increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities
|
0.52% |
8.5
|
Enterococcus faecalis
Species-level Match
|
RISB0497 |
Cryptolestes ferrugineus
Order: Coleoptera
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
|
0.39% |
8.0
|
Blattabacterium cuenoti
Species-level Match
|
RISB0518 |
Cryptocercus punctulatus
Order: Blattodea
|
collaborative arginine biosynthesis
|
0.74% |
6.4
|
Blattabacterium cuenoti
Species-level Match
|
RISB0093 |
Blattella germanica
Order: Blattodea
|
obligate endosymbiont
|
0.74% |
6.2
|
Candidatus Erwinia haradaeae
Species-level Match
|
RISB1632 |
Lachninae
Order: Hemiptera
|
None
|
0.24% |
5.2
|
Salmonella enterica
Species-level Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
0.22% |
5.2
|
Treponema
|
RISB2377 |
termite
Order: Blattodea
|
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
|
0.30% |
5.2
|
Proteus
|
RISB0001 |
Leptinotarsa decemlineata
Order: Coleoptera
|
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
|
0.28% |
3.0
|
Rhizobium
|
RISB0135 |
Coccinella septempunctata
Order: Coleoptera
|
be commonly found in plant roots and they all have nitrogen fixation abilities
|
1.19% |
2.8
|
Bacteroides
|
RISB0256 |
Leptocybe invasa
Order: Hymenoptera
|
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
|
0.42% |
2.7
|
Bacteroides
|
RISB1183 |
Oryzaephilus surinamensis
Order: Coleoptera
|
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
|
0.42% |
2.5
|
Proteus
|
RISB2315 |
Aedes aegypti
Order: Diptera
|
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
|
0.28% |
2.4
|
Streptococcus
|
RISB2624 |
Reticulitermes flavipes
Order: Blattodea
|
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
|
0.54% |
2.2
|
Vibrio
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.69% |
2.0
|
Chryseobacterium
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.84% |
1.4
|
Cupriavidus
|
RISB0694 |
Alydus tomentosus
Order: Hemiptera
|
None
|
1.32% |
1.3
|
Chryseobacterium
|
RISB1874 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.84% |
1.1
|
Mycobacterium
|
RISB1156 |
Nicrophorus concolor
Order: Coleoptera
|
produces Antimicrobial compounds
|
0.25% |
0.9
|
Chryseobacterium
|
RISB0015 |
Aedes aegypti
Order: Diptera
|
None
|
0.84% |
0.8
|
Flavobacterium
|
RISB0659 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.83% |
0.8
|
Treponema
|
RISB0169 |
Reticulitermes flaviceps
Order: Blattodea
|
None
|
0.30% |
0.3
|
Helicobacter
|
RISB0662 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.29% |
0.3
|
Legionella
|
RISB1687 |
Polyplax serrata
Order: Phthiraptera
|
None
|
0.15% |
0.2
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.