SRR26511506 - Thaumetopoea processionea
Basic Information
Run: SRR26511506
Assay Type: WGS
Bioproject: PRJNA1010135
Biosample: SAMN37977081
Bytes: 1523872916
Center Name: JULIUS KUEHN-INSTITUT
Sequencing Information
Instrument: MinION
Library Layout: SINGLE
Library Selection: RANDOM
Platform: OXFORD_NANOPORE
Geographic Information
Country: Germany
Continent: Europe
Location Name: Germany: Waldlaubersheim\, Rhineland-Palatinate
Latitude/Longitude: -
Sample Information
Host: Thaumetopoea processionea
Isolation: bioassay Bw treated larva 1
Biosample Model: Metagenome or environmental
Collection Date: 2023-05-18
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Escherichia coli
Species-level Match
Host Order Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
50.16% |
69.5
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB2120 |
Galleria mellonella
Order: Lepidoptera
|
mediate trans-generational immune priming
|
50.16% |
66.0
|
Escherichia coli
Species-level Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
50.16% |
57.9
|
Bacillus sp. 7D3
Species-level Match
Host Order Match
|
RISB2181 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
2.55% |
22.6
|
Bacillus thuringiensis
Species-level Match
Host Order Match
|
RISB0109 |
Tuta absoluta
Order: Lepidoptera
|
Individual exposure of B. thuringiensis isolates to P. absoluta revealed high susceptibility of the pest and could potentially be used to develop effective, safe and affordable microbial pesticides for the management of P. absoluta.
|
2.58% |
22.2
|
Wolbachia
Host Order Match
|
RISB0263 |
Homona magnanima
Order: Lepidoptera
|
To achieve Male killing (MK), Wolbachia impaired the host dosage compensation system and triggered abnormal apoptosis in male embryos.Also, disrupted the sex-determination cascade of males by inducing female-type splice variants of doublesex (dsx), a downstream regulator of the sex-determining gene cascade.
|
6.11% |
21.1
|
Wolbachia
Host Order Match
|
RISB2547 |
Eurema hecabe
Order: Lepidoptera
|
the butterfly Eurema hecabe is infected with two different strains (wHecCI2 and wHecFem2) of the bacterial endosymbiont Wolbachia, genetic males are transformed into functional females, resulting in production of all-female broods.
|
6.11% |
20.7
|
Bacillus cereus
Species-level Match
Host Order Match
|
RISB2489 |
Anticarsia gemmatalis
Order: Lepidoptera
|
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
|
1.70% |
20.7
|
Klebsiella pneumoniae
Species-level Match
Host Order Match
|
RISB2185 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.31% |
20.3
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1122 |
Bombyx mori
Order: Lepidoptera
|
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
|
0.65% |
19.7
|
Wolbachia
Host Order Match
|
RISB2473 |
Phyllonorycter blancardella
Order: Lepidoptera
|
P. blancardella relies on bacterial endosymbionts (possibly Wolbachia) to manipulate the physiology of its host plant, resulting in the green-island phenotype
|
6.11% |
19.3
|
Staphylococcus xylosus
Species-level Match
Host Order Match
|
RISB2497 |
Anticarsia gemmatalis
Order: Lepidoptera
|
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
|
0.24% |
19.2
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1123 |
Bombyx mori
Order: Lepidoptera
|
confer a significant fitness advantage via nutritional (amino acids) upgrading
|
0.65% |
17.2
|
Clostridium
Host Order Match
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
6.04% |
17.1
|
Staphylococcus xylosus
Species-level Match
Host Order Match
|
RISB2247 |
Anticarsia gemmatalis
Order: Lepidoptera
|
mitigation of the negative effects of proteinase inhibitors produced by the host plant
|
0.24% |
17.0
|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB0286 |
Diatraea saccharalis
Order: Lepidoptera
|
associated with cellulose degradation
|
1.02% |
16.8
|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB0785 |
Samia ricini
Order: Lepidoptera
|
cellulolytic activity
|
1.02% |
16.4
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1998 |
Diatraea saccharalis
Order: Lepidoptera
|
possess cellulose degrading activity
|
0.65% |
16.4
|
Staphylococcus xylosus
Species-level Match
Host Order Match
|
RISB2246 |
Anticarsia gemmatalis
Order: Lepidoptera
|
Against plant-derived protease inhibitor; pest control
|
0.24% |
16.3
|
Klebsiella pneumoniae
Species-level Match
Host Order Match
|
RISB2459 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
0.31% |
16.3
|
Buchnera aphidicola
Species-level Match
Host Order Match
|
RISB0290 |
Helicoverpa armigera
Order: Lepidoptera
|
None
|
1.14% |
16.1
|
Klebsiella pneumoniae
Species-level Match
Host Order Match
|
RISB1994 |
Diatraea saccharalis
Order: Lepidoptera
|
possess cellulose degrading activity
|
0.31% |
16.0
|
Acinetobacter
Host Order Match
|
RISB1500 |
Lymantria dispar
Order: Lepidoptera
|
Bacteria isolated from a host plant had a glycoside-degrading activity, which enhanced growth of the moth when larvae were fed on a toxin-containing diet
|
0.74% |
13.8
|
Acinetobacter
Host Order Match
|
RISB0390 |
Chilo suppressalis
Order: Lepidoptera
|
interfere with plant anti-herbivore defense and avoid fully activating the JA-regulated antiherbivore defenses of rice plants
|
0.74% |
13.2
|
Acinetobacter
Host Order Match
|
RISB0731 |
Lymantria dispar
Order: Lepidoptera
|
Condensed tannins improved growth of Acinetobacter sp. by 15% (by measuring the optical density)
|
0.74% |
12.7
|
Bacteroides
Host Order Match
|
RISB0090 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.45% |
12.6
|
Streptomyces sp. T12
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
2.65% |
11.6
|
Paraclostridium
Host Order Match
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.39% |
11.5
|
Streptomyces sp. T12
Species-level Match
|
RISB2334 |
Sirex noctilio
Order: Hymenoptera
|
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
|
2.65% |
11.4
|
Buchnera aphidicola
Species-level Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
1.14% |
11.1
|
Buchnera aphidicola
Species-level Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
1.14% |
10.9
|
Priestia
Host Order Match
|
RISB0839 |
Helicoverpa armigera
Order: Lepidoptera
|
producing amylase
|
0.51% |
10.9
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
1.02% |
10.8
|
Lactococcus lactis
Species-level Match
|
RISB0131 |
Ceratitis capitata
Order: Diptera
|
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
|
0.68% |
10.7
|
Clostridium
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
6.04% |
10.3
|
Streptomyces sp. T12
Species-level Match
|
RISB1134 |
mud dauber wasp
Order: Hymenoptera
|
secondary metabolites derived from a Streptomyces sp. displayed significant inhibitory activity against hexokinase II
|
2.65% |
10.0
|
Lactococcus lactis
Species-level Match
|
RISB0967 |
Oulema melanopus
Order: Coleoptera
|
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
|
0.68% |
9.2
|
Blattabacterium cuenoti
Species-level Match
|
RISB0133 |
Panesthiinae
Order: Blattodea
|
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
|
0.88% |
8.8
|
Lactococcus lactis
Species-level Match
|
RISB0113 |
Bactrocera dorsalis
Order: Diptera
|
increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities
|
0.68% |
8.7
|
Rahnella
|
RISB1623 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
3.51% |
8.3
|
Serratia proteamaculans
Species-level Match
|
RISB1846 |
Dendroctonus adjunctus
Order: Coleoptera
|
display strong cellulolytic activity and process a single endoglucanase encoding gene
|
0.26% |
7.0
|
Blattabacterium cuenoti
Species-level Match
|
RISB0518 |
Cryptocercus punctulatus
Order: Blattodea
|
collaborative arginine biosynthesis
|
0.88% |
6.6
|
Blattabacterium cuenoti
Species-level Match
|
RISB0093 |
Blattella germanica
Order: Blattodea
|
obligate endosymbiont
|
0.88% |
6.3
|
Clostridium
|
RISB1959 |
Pyrrhocoridae
Order: Hemiptera
|
None
|
6.04% |
6.0
|
Rahnella
|
RISB1800 |
Dendroctonus valens
Order: Coleoptera
|
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth
|
3.51% |
5.7
|
Rahnella
|
RISB0741 |
Dendroctonus ponderosae
Order: Coleoptera
|
R. aquatilis decreased (−)-α-pinene (38%) and (+)-α-pinene (46%) by 40% and 45% (by GC-MS), respectively
|
3.51% |
5.6
|
Treponema
|
RISB2377 |
termite
Order: Blattodea
|
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
|
0.36% |
5.2
|
Candidatus Erwinia haradaeae
Species-level Match
|
RISB1632 |
Lachninae
Order: Hemiptera
|
None
|
0.23% |
5.2
|
Rhizobium
|
RISB0135 |
Coccinella septempunctata
Order: Coleoptera
|
be commonly found in plant roots and they all have nitrogen fixation abilities
|
1.54% |
3.1
|
Bacteroides
|
RISB0256 |
Leptocybe invasa
Order: Hymenoptera
|
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
|
0.45% |
2.8
|
Bacteroides
|
RISB1183 |
Oryzaephilus surinamensis
Order: Coleoptera
|
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
|
0.45% |
2.5
|
Vibrio
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.94% |
2.3
|
Chryseobacterium
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
1.45% |
2.0
|
Chryseobacterium
|
RISB1874 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
1.45% |
1.7
|
Chryseobacterium
|
RISB0015 |
Aedes aegypti
Order: Diptera
|
None
|
1.45% |
1.5
|
Cupriavidus
|
RISB0694 |
Alydus tomentosus
Order: Hemiptera
|
None
|
1.14% |
1.1
|
Mycobacterium
|
RISB1156 |
Nicrophorus concolor
Order: Coleoptera
|
produces Antimicrobial compounds
|
0.24% |
0.9
|
Treponema
|
RISB0169 |
Reticulitermes flaviceps
Order: Blattodea
|
None
|
0.36% |
0.4
|
Helicobacter
|
RISB0662 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.33% |
0.3
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.