SRR26511505 - Thaumetopoea processionea
Basic Information
Run: SRR26511505
Assay Type: WGS
Bioproject: PRJNA1010135
Biosample: SAMN37977082
Bytes: 1150414301
Center Name: JULIUS KUEHN-INSTITUT
Sequencing Information
Instrument: MinION
Library Layout: SINGLE
Library Selection: RANDOM
Platform: OXFORD_NANOPORE
Geographic Information
Country: Germany
Continent: Europe
Location Name: Germany: Waldlaubersheim\, Rhineland-Palatinate
Latitude/Longitude: -
Sample Information
Host: Thaumetopoea processionea
Isolation: bioassay Bw treated larva 2
Biosample Model: Metagenome or environmental
Collection Date: 2023-05-18
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Escherichia coli
Species-level Match
Host Order Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
61.22% |
80.5
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB2120 |
Galleria mellonella
Order: Lepidoptera
|
mediate trans-generational immune priming
|
61.22% |
77.0
|
Escherichia coli
Species-level Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
61.22% |
68.9
|
Bacillus thuringiensis
Species-level Match
Host Order Match
|
RISB0109 |
Tuta absoluta
Order: Lepidoptera
|
Individual exposure of B. thuringiensis isolates to P. absoluta revealed high susceptibility of the pest and could potentially be used to develop effective, safe and affordable microbial pesticides for the management of P. absoluta.
|
2.62% |
22.3
|
Bacillus sp. 7D3
Species-level Match
Host Order Match
|
RISB2181 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
1.43% |
21.4
|
Wolbachia
Host Order Match
|
RISB0263 |
Homona magnanima
Order: Lepidoptera
|
To achieve Male killing (MK), Wolbachia impaired the host dosage compensation system and triggered abnormal apoptosis in male embryos.Also, disrupted the sex-determination cascade of males by inducing female-type splice variants of doublesex (dsx), a downstream regulator of the sex-determining gene cascade.
|
6.15% |
21.2
|
Wolbachia
Host Order Match
|
RISB2547 |
Eurema hecabe
Order: Lepidoptera
|
the butterfly Eurema hecabe is infected with two different strains (wHecCI2 and wHecFem2) of the bacterial endosymbiont Wolbachia, genetic males are transformed into functional females, resulting in production of all-female broods.
|
6.15% |
20.8
|
Klebsiella pneumoniae
Species-level Match
Host Order Match
|
RISB2185 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.32% |
20.3
|
Bacillus thuringiensis
Species-level Match
Host Order Match
|
RISB1863 |
Spodoptera littoralis
Order: Lepidoptera
|
a widely used bacterial entomopathogen producing insecticidal toxins, some of which are expressed in insect-resistant transgenic crops
|
2.62% |
20.3
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1122 |
Bombyx mori
Order: Lepidoptera
|
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
|
0.74% |
19.7
|
Wolbachia
Host Order Match
|
RISB2473 |
Phyllonorycter blancardella
Order: Lepidoptera
|
P. blancardella relies on bacterial endosymbionts (possibly Wolbachia) to manipulate the physiology of its host plant, resulting in the green-island phenotype
|
6.15% |
19.3
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1123 |
Bombyx mori
Order: Lepidoptera
|
confer a significant fitness advantage via nutritional (amino acids) upgrading
|
0.74% |
17.3
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1998 |
Diatraea saccharalis
Order: Lepidoptera
|
possess cellulose degrading activity
|
0.74% |
16.5
|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB0286 |
Diatraea saccharalis
Order: Lepidoptera
|
associated with cellulose degradation
|
0.63% |
16.4
|
Klebsiella pneumoniae
Species-level Match
Host Order Match
|
RISB2459 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
0.32% |
16.3
|
Clostridium
Host Order Match
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
5.26% |
16.3
|
Staphylococcus
Host Order Match
|
RISB1545 |
Bombyx mori
Order: Lepidoptera
|
Staphyloxanthin pigment from gut symbiont presented considerable biological properties including in vitro antimicrobial activity against pathogens Staphylococcus aureus, Escherichia coli and Candida albicans; in vitro antioxidant activity by % DPPH free radical scavenging activity
|
1.29% |
16.3
|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB0785 |
Samia ricini
Order: Lepidoptera
|
cellulolytic activity
|
0.63% |
16.1
|
Klebsiella pneumoniae
Species-level Match
Host Order Match
|
RISB1994 |
Diatraea saccharalis
Order: Lepidoptera
|
possess cellulose degrading activity
|
0.32% |
16.0
|
Buchnera aphidicola
Species-level Match
Host Order Match
|
RISB0290 |
Helicoverpa armigera
Order: Lepidoptera
|
None
|
0.75% |
15.8
|
Staphylococcus
Host Order Match
|
RISB2497 |
Anticarsia gemmatalis
Order: Lepidoptera
|
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
|
1.29% |
15.3
|
Acinetobacter
Host Order Match
|
RISB1500 |
Lymantria dispar
Order: Lepidoptera
|
Bacteria isolated from a host plant had a glycoside-degrading activity, which enhanced growth of the moth when larvae were fed on a toxin-containing diet
|
0.55% |
13.6
|
Acinetobacter
Host Order Match
|
RISB0390 |
Chilo suppressalis
Order: Lepidoptera
|
interfere with plant anti-herbivore defense and avoid fully activating the JA-regulated antiherbivore defenses of rice plants
|
0.55% |
13.1
|
Staphylococcus
Host Order Match
|
RISB2247 |
Anticarsia gemmatalis
Order: Lepidoptera
|
mitigation of the negative effects of proteinase inhibitors produced by the host plant
|
1.29% |
13.0
|
Bacteroides
Host Order Match
|
RISB0090 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.47% |
12.6
|
Acinetobacter
Host Order Match
|
RISB0731 |
Lymantria dispar
Order: Lepidoptera
|
Condensed tannins improved growth of Acinetobacter sp. by 15% (by measuring the optical density)
|
0.55% |
12.5
|
Streptomyces sp. T12
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
2.77% |
11.7
|
Proteus
Host Order Match
|
RISB2460 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
0.70% |
11.7
|
Streptomyces sp. T12
Species-level Match
|
RISB2334 |
Sirex noctilio
Order: Hymenoptera
|
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
|
2.77% |
11.5
|
Paraclostridium
Host Order Match
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.28% |
11.3
|
Buchnera aphidicola
Species-level Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
0.75% |
10.8
|
Priestia
Host Order Match
|
RISB0839 |
Helicoverpa armigera
Order: Lepidoptera
|
producing amylase
|
0.37% |
10.7
|
Buchnera aphidicola
Species-level Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
0.75% |
10.5
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.63% |
10.5
|
Streptomyces sp. T12
Species-level Match
|
RISB1134 |
mud dauber wasp
Order: Hymenoptera
|
secondary metabolites derived from a Streptomyces sp. displayed significant inhibitory activity against hexokinase II
|
2.77% |
10.1
|
Clostridium
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
5.26% |
9.5
|
Blattabacterium cuenoti
Species-level Match
|
RISB0133 |
Panesthiinae
Order: Blattodea
|
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
|
1.30% |
9.2
|
Blattabacterium cuenoti
Species-level Match
|
RISB0518 |
Cryptocercus punctulatus
Order: Blattodea
|
collaborative arginine biosynthesis
|
1.30% |
7.0
|
Serratia proteamaculans
Species-level Match
|
RISB1846 |
Dendroctonus adjunctus
Order: Coleoptera
|
display strong cellulolytic activity and process a single endoglucanase encoding gene
|
0.23% |
6.9
|
Blattabacterium cuenoti
Species-level Match
|
RISB0093 |
Blattella germanica
Order: Blattodea
|
obligate endosymbiont
|
1.30% |
6.7
|
Rahnella
|
RISB1623 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.47% |
5.3
|
Clostridium
|
RISB1959 |
Pyrrhocoridae
Order: Hemiptera
|
None
|
5.26% |
5.3
|
Candidatus Erwinia haradaeae
Species-level Match
|
RISB1632 |
Lachninae
Order: Hemiptera
|
None
|
0.20% |
5.2
|
Treponema
|
RISB2377 |
termite
Order: Blattodea
|
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
|
0.27% |
5.2
|
Xanthomonas
|
RISB0498 |
Xylocopa appendiculata
Order: Hymenoptera
|
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
|
0.28% |
4.0
|
Proteus
|
RISB0001 |
Leptinotarsa decemlineata
Order: Coleoptera
|
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
|
0.70% |
3.4
|
Proteus
|
RISB2315 |
Aedes aegypti
Order: Diptera
|
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
|
0.70% |
2.8
|
Bacteroides
|
RISB0256 |
Leptocybe invasa
Order: Hymenoptera
|
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
|
0.47% |
2.8
|
Rahnella
|
RISB1800 |
Dendroctonus valens
Order: Coleoptera
|
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth
|
0.47% |
2.7
|
Rahnella
|
RISB0741 |
Dendroctonus ponderosae
Order: Coleoptera
|
R. aquatilis decreased (−)-α-pinene (38%) and (+)-α-pinene (46%) by 40% and 45% (by GC-MS), respectively
|
0.47% |
2.6
|
Bacteroides
|
RISB1183 |
Oryzaephilus surinamensis
Order: Coleoptera
|
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
|
0.47% |
2.5
|
Lactiplantibacillus
|
RISB1465 |
Drosophila melanogaster
Order: Diptera
|
L. plantarum increases its growth-promotion ability by adapting to Drosophila diet
|
0.85% |
2.5
|
Xanthomonas
|
RISB0217 |
Xylocopa appendiculata
Order: Hymenoptera
|
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
|
0.28% |
2.2
|
Lactiplantibacillus
|
RISB0674 |
Drosophila melanogaster
Order: Diptera
|
could effectively inhibit fungal spore germinations
|
0.85% |
1.9
|
Vibrio
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.47% |
1.8
|
Peribacillus
|
RISB1877 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.98% |
1.3
|
Cupriavidus
|
RISB0694 |
Alydus tomentosus
Order: Hemiptera
|
None
|
1.00% |
1.0
|
Lactiplantibacillus
|
RISB0608 |
Drosophila melanogaster
Order: Diptera
|
None
|
0.85% |
0.9
|
Helicobacter
|
RISB0662 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.29% |
0.3
|
Treponema
|
RISB0169 |
Reticulitermes flaviceps
Order: Blattodea
|
None
|
0.27% |
0.3
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.