SRR25391515 - Diptera
Basic Information
Run: SRR25391515
Assay Type: WGS
Bioproject: PRJNA997598
Biosample: SAMN36683875
Bytes: 611997080
Center Name: USDA ARS
Sequencing Information
Instrument: NextSeq 2000
Library Layout: PAIRED
Library Selection: RANDOM
Platform: ILLUMINA
Geographic Information
Country: USA
Continent: North America
Location Name: USA: Kansas
Latitude/Longitude: 39.01 N 98.48 W
Sample Information
Host: Diptera
Isolation: -
Biosample Model: MIMS.me,MIGS/MIMS/MIMARKS.host-associated
Collection Date: 2022-05
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
| Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
|---|---|---|---|---|---|
|
Wolbachia
Host Order Match
|
RISB0766 |
Aedes fluviatilis
Order: Diptera
|
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
|
8.01% |
23.0
|
|
Wolbachia
Host Order Match
|
RISB0779 |
Drosophila melanogaster
Order: Diptera
|
Wolbachia infection affects differential gene expression in Drosophila testis.Genes involved in carbohydrate metabolism, lysosomal degradation, proteolysis, lipid metabolism, and immune response were upregulated in the presence of Wolbachia
|
8.01% |
22.8
|
|
Wolbachia
Host Order Match
|
RISB1408 |
Anastrepha fraterculus
Order: Diptera
|
Wolbachia is the only known reproductive symbiont present in these morphotypes. Wolbachia reduced the ability for embryonic development in crosses involving cured females and infected males within each morphotype (uni-directional CI).
|
8.01% |
22.7
|
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB0131 |
Ceratitis capitata
Order: Diptera
|
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
|
0.64% |
20.6
|
|
Psychrobacter sp. van23A
Species-level Match
Host Order Match
|
RISB1773 |
Calliphoridae
Order: Diptera
|
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
|
2.52% |
20.0
|
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB0772 |
Delia antiqua
Order: Diptera
|
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
1.37% |
19.7
|
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB0008 |
Phormia regina
Order: Diptera
|
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
1.37% |
19.3
|
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB0113 |
Bactrocera dorsalis
Order: Diptera
|
increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities
|
0.64% |
18.6
|
|
Sphingobacterium faecium
Species-level Match
Host Order Match
|
RISB1226 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.91% |
18.6
|
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB0611 |
Bactrocera dorsalis
Order: Diptera
|
may hydrolysing nitrogenous waste and providing metabolizable nitrogen for B. dorsalis
|
1.37% |
18.1
|
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB1411 |
Bactrocera dorsalis
Order: Diptera
|
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
|
0.54% |
18.1
|
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1227 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.34% |
18.0
|
|
Psychrobacter sp. WB2
Species-level Match
Host Order Match
|
RISB1773 |
Calliphoridae
Order: Diptera
|
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
|
0.21% |
17.7
|
|
Klebsiella pneumoniae
Species-level Match
Host Order Match
|
RISB1771 |
Muscidae
Order: Diptera
|
None
|
2.52% |
17.5
|
|
Sphingobacterium faecium
Species-level Match
Host Order Match
|
RISB1400 |
Delia antiqua
Order: Diptera
|
suppressed Beauveria bassiana conidia germination and hyphal growth
|
0.91% |
17.3
|
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1141 |
Hermetia illucens
Order: Diptera
|
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
|
0.34% |
17.1
|
|
Bacillus sp. Y1
Species-level Match
Host Order Match
|
RISB0791 |
Anopheles barbirostris
Order: Diptera
|
without this midgut flora showed delayed development to become adult
|
0.51% |
16.9
|
|
Bacillus thuringiensis
Species-level Match
Host Order Match
|
RISB0820 |
Simulium tani
Order: Diptera
|
show resistance to some antibiotics
|
1.14% |
16.8
|
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1401 |
Delia antiqua
Order: Diptera
|
suppressed Beauveria bassiana conidia germination and hyphal growth
|
0.34% |
16.7
|
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB0095 |
Bactrocera minax
Order: Diptera
|
egrade phenols in unripe citrus in B. minax larvae
|
0.54% |
16.5
|
|
Providencia rettgeri
Species-level Match
Host Order Match
|
RISB1001 |
Anastrepha obliqua
Order: Diptera
|
improve the sexual competitiveness of males
|
0.60% |
16.5
|
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB1769 |
Calliphoridae
Order: Diptera
|
None
|
1.41% |
16.4
|
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB1167 |
Bactrocera dorsalis
Order: Diptera
|
Promote the growth of larvae
|
0.64% |
16.2
|
|
Klebsiella sp. CTHL.F3a
Species-level Match
Host Order Match
|
RISB0917 |
Aedes aegypti
Order: Diptera
|
could impact larval development (e.g., spermidine)
|
0.17% |
16.2
|
|
Providencia rettgeri
Species-level Match
Host Order Match
|
RISB1169 |
Bactrocera dorsalis
Order: Diptera
|
Promote the growth of larvae
|
0.60% |
16.2
|
|
Bacillus cereus
Species-level Match
Host Order Match
|
RISB1872 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.78% |
16.1
|
|
Acinetobacter sp. TTH0-4
Species-level Match
Host Order Match
|
RISB2083 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.38% |
15.9
|
|
Klebsiella sp. CTHL.F3a
Species-level Match
Host Order Match
|
RISB1573 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
0.17% |
15.9
|
|
Enterobacter hormaechei
Species-level Match
Host Order Match
|
RISB1331 |
Zeugodacus cucurbitae
Order: Diptera
|
None
|
0.89% |
15.9
|
|
Buchnera aphidicola
Species-level Match
Host Order Match
|
RISB0051 |
Episyrphus balteatus
Order: Diptera
|
None
|
0.84% |
15.8
|
|
Acinetobacter sp. A1-4-2
Species-level Match
Host Order Match
|
RISB2083 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.24% |
15.8
|
|
Chryseobacterium sp. SNU WT5
Species-level Match
Host Order Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.19% |
15.8
|
|
Providencia alcalifaciens
Species-level Match
Host Order Match
|
RISB1168 |
Bactrocera dorsalis
Order: Diptera
|
Promote the growth of larvae
|
0.15% |
15.7
|
|
Candidatus Cardinium
Host Order Match
|
RISB1439 |
Lutzomyia evansi
Order: Diptera
|
‘Candidatus Cardinium’ is a recently described bacterium from the Bacteroidetes group involved in diverse reproduction alterations of its arthropod hosts (including cytoplasmic incompatibility, parthenogenesis, and feminization) similar to Wolbachia
|
0.72% |
15.7
|
|
Chryseobacterium sp. CY350
Species-level Match
Host Order Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.12% |
15.7
|
|
Acinetobacter sp. F9
Species-level Match
Host Order Match
|
RISB2083 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.11% |
15.7
|
|
Ignatzschineria
Host Order Match
|
RISB0562 |
Chrysomya megacephala
Order: Diptera
|
Ignatzschineria indica is a Gram-negative bacterium commonly associated with maggot infestation and myiasis, a probable marker for myiasis diagnosis
|
1.50% |
14.5
|
|
Comamonas
Host Order Match
|
RISB2021 |
Bactrocera dorsalis
Order: Diptera
|
This group in the immature stages may be helping the insects to cope with oxidative stress by supplementing available oxygen.
|
0.74% |
13.2
|
|
Myroides
Host Order Match
|
RISB0626 |
Musca altica
Order: Diptera
|
None
|
2.26% |
12.3
|
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
2.14% |
12.0
|
|
Lactiplantibacillus
Host Order Match
|
RISB1465 |
Drosophila melanogaster
Order: Diptera
|
L. plantarum increases its growth-promotion ability by adapting to Drosophila diet
|
0.08% |
11.7
|
|
Dysgonomonas
Host Order Match
|
RISB1235 |
Hermetia illucens
Order: Diptera
|
provides the tools for degrading of a broad range of substrates
|
0.09% |
11.4
|
|
Vagococcus
Host Order Match
|
RISB0042 |
Aldrichina grahami
Order: Diptera
|
None
|
1.14% |
11.1
|
|
Lactiplantibacillus
Host Order Match
|
RISB0674 |
Drosophila melanogaster
Order: Diptera
|
could effectively inhibit fungal spore germinations
|
0.08% |
11.1
|
|
Comamonas
Host Order Match
|
RISB1875 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.74% |
11.0
|
|
Buchnera aphidicola
Species-level Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
0.84% |
10.8
|
|
Streptomyces sp. T12
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
1.81% |
10.8
|
|
Streptomyces sp. NBC_01324
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
1.79% |
10.8
|
|
Comamonas
Host Order Match
|
RISB2020 |
Bactrocera dorsalis
Order: Diptera
|
None
|
0.74% |
10.7
|
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
1.41% |
10.7
|
|
Buchnera aphidicola
Species-level Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
0.84% |
10.6
|
|
Streptomyces sp. T12
Species-level Match
|
RISB2334 |
Sirex noctilio
Order: Hymenoptera
|
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
|
1.81% |
10.5
|
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB2224 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
2.14% |
10.5
|
|
Alcaligenes
Host Order Match
|
RISB1871 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.17% |
10.5
|
|
Peribacillus
Host Order Match
|
RISB1877 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.14% |
10.4
|
|
Pantoea agglomerans
Species-level Match
|
RISB2197 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.32% |
10.3
|
|
Paenibacillus polymyxa
Species-level Match
|
RISB2195 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.18% |
10.2
|
|
Variovorax
Host Order Match
|
RISB1712 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.10% |
10.1
|
|
Brevundimonas
Host Order Match
|
RISB1703 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.09% |
10.1
|
|
Lactiplantibacillus
Host Order Match
|
RISB0608 |
Drosophila melanogaster
Order: Diptera
|
None
|
0.08% |
10.1
|
|
Pseudomonas sp. NIBR-H-19
Species-level Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.19% |
10.0
|
|
Serratia liquefaciens
Species-level Match
|
RISB1624 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.19% |
10.0
|
|
Sphingobacterium sp. UDSM-2020
Species-level Match
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
1.28% |
9.6
|
|
Clostridium sp. LQ25
Species-level Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.30% |
9.5
|
|
Clostridium sp. DL-VIII
Species-level Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.08% |
9.3
|
|
Escherichia coli
Species-level Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
1.41% |
9.1
|
|
Mammaliicoccus sciuri
Species-level Match
|
RISB0075 |
Bombyx mori
Order: Lepidoptera
|
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
|
0.10% |
9.1
|
|
Candidatus Carsonella ruddii
Species-level Match
|
RISB0394 |
Cacopsylla pyricola
Order: Hemiptera
|
Carsonella produces most essential amino acids (EAAs) for C. pyricola, Psyllophila complements the genes missing in Carsonella for the tryptophan pathway and synthesizes some vitamins and carotenoids
|
0.06% |
9.0
|
|
Blattabacterium cuenoti
Species-level Match
|
RISB0133 |
Panesthiinae
Order: Blattodea
|
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
|
0.38% |
8.3
|
|
Enterococcus faecalis
Species-level Match
|
RISB0497 |
Cryptolestes ferrugineus
Order: Coleoptera
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
|
0.54% |
8.1
|
|
Proteus vulgaris
Species-level Match
|
RISB0001 |
Leptinotarsa decemlineata
Order: Coleoptera
|
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
|
0.24% |
7.9
|
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1693 |
Plutella xylostella
Order: Lepidoptera
|
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
|
0.11% |
7.6
|
|
Pantoea agglomerans
Species-level Match
|
RISB2579 |
Schistocerca gregaria
Order: Orthoptera
|
produces an antifungal and antibacterial molecule serving as antimicrobial defense against gut pathogens
|
0.32% |
7.4
|
|
Serratia liquefaciens
Species-level Match
|
RISB1801 |
Dendroctonus valens
Order: Coleoptera
|
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth
|
0.19% |
7.4
|
|
Serratia liquefaciens
Species-level Match
|
RISB2461 |
Bombyx mori
Order: Lepidoptera
|
able to utilize three polysaccharides including CMcellulose, xylan and pectin
|
0.19% |
6.7
|
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1692 |
Plutella xylostella
Order: Lepidoptera
|
participate in the synthesis of host lacking amino acids histidine and threonine
|
0.11% |
6.7
|
|
Erwinia sp. E602
Species-level Match
|
RISB0808 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-12 oxidation pathway
|
0.19% |
6.6
|
|
Pantoea agglomerans
Species-level Match
|
RISB0379 |
Frankliniella occidentalis
Order: Thysanoptera
|
gut symbionts are required for their development
|
0.32% |
6.3
|
|
Proteus vulgaris
Species-level Match
|
RISB2460 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
0.24% |
6.2
|
|
Blattabacterium cuenoti
Species-level Match
|
RISB0518 |
Cryptocercus punctulatus
Order: Blattodea
|
collaborative arginine biosynthesis
|
0.38% |
6.1
|
|
Vibrio
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
4.72% |
6.0
|
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1691 |
Plutella xylostella
Order: Lepidoptera
|
activity of cellulose and hemicellulose
|
0.11% |
5.9
|
|
Erwinia sp. E602
Species-level Match
|
RISB1986 |
Bombyx mori
Order: Lepidoptera
|
producing cellulase and amylase
|
0.19% |
5.8
|
|
Blattabacterium cuenoti
Species-level Match
|
RISB0093 |
Blattella germanica
Order: Blattodea
|
obligate endosymbiont
|
0.38% |
5.8
|
|
Salmonella enterica
Species-level Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
0.80% |
5.8
|
|
Candidatus Cardinium
|
RISB0223 |
Bemisia tabaci
Order: Hemiptera
|
Cardinium could inhibit the defense response of the host plant and decrease the detoxification metabolism ability of the host whitefly, decrease the expression of detoxification metabolism genes, especially the uridine 5'-diphospho-glucuronyltransferase and P450 genes,
|
0.72% |
5.7
|
|
Flavobacterium johnsoniae
Species-level Match
|
RISB0659 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.46% |
5.5
|
|
Treponema
|
RISB2377 |
termite
Order: Blattodea
|
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
|
0.53% |
5.4
|
|
Staphylococcus epidermidis
Species-level Match
|
RISB1070 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.11% |
5.3
|
|
Candidatus Erwinia haradaeae
Species-level Match
|
RISB1632 |
Lachninae
Order: Hemiptera
|
None
|
0.11% |
5.1
|
|
Francisella
|
RISB1907 |
Bombyx mori
Order: Lepidoptera
|
After infection with F. tularensis, the induction of melanization and nodulation, which are immune responses to bacterial infection, were inhibited in silkworms. Pre-inoculation of silkworms with F. tularensis enhanced the expression of antimicrobial peptides and resistance to infection by pathogenic bacteria.
|
0.11% |
5.1
|
|
Gilliamella
|
RISB0102 |
Apis mellifera
Order: Hymenoptera
|
Gilliamella apicola carries the gene for the desaturase FADS2, which is able to metabolize polyunsaturated fatty acids from pollen and synthesize endocannabinoid, a lipogenic neuroactive substance, thereby modulating reward learning and memory in honeybees.
|
0.09% |
5.1
|
|
Candidatus Megaera polyxenophila
Species-level Match
|
RISB0587 |
Multiple species
Order: None
|
None
|
0.07% |
5.1
|
|
Bifidobacterium
|
RISB0174 |
Apis mellifera
Order: Hymenoptera
|
Bifidobacterium provides complementary demethylation service to promote Gilliamella growth on methylated homogalacturonan, an enriched polysaccharide of pectin. In exchange, Gilliamella shares digestive products with Bifidobacterium, through which a positive interaction is established
|
0.07% |
5.1
|
|
Candidatus Carsonella ruddii
Species-level Match
|
RISB0748 |
Diaphorina citri
Order: Hemiptera
|
None
|
0.06% |
5.1
|
|
Rahnella
|
RISB1623 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.22% |
5.0
|
|
Rhizobium
|
RISB0135 |
Coccinella septempunctata
Order: Coleoptera
|
be commonly found in plant roots and they all have nitrogen fixation abilities
|
2.41% |
4.0
|
|
Bifidobacterium
|
RISB0616 |
Spodoptera frugiperda
Order: Lepidoptera
|
Strain wkB204 grew in the presence of amygdalin as the sole carbon source, suggesting that this strain degrades amygdalin and is not susceptible to the potential byproducts
|
0.07% |
3.5
|
|
Candidatus Blochmanniella
|
RISB2542 |
Camponotus
Order: Hymenoptera
|
Blochmannia provide essential amino acids to its host,Camponotus floridanus, and that it may also play a role in nitrogen recycling via its functional urease
|
0.08% |
3.2
|
|
Candidatus Blochmanniella
|
RISB1827 |
Camponotus floridanus
Order: Hymenoptera
|
a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission
|
0.08% |
3.2
|
|
Candidatus Cardinium
|
RISB2290 |
Sogatella furcifera
Order: Hemiptera
|
dual infection with Cardinium and Wolbachia induced strong cytoplasmic incompatibility (CI) in a single host
|
0.72% |
2.9
|
|
Bacteroides
|
RISB0256 |
Leptocybe invasa
Order: Hymenoptera
|
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
|
0.56% |
2.9
|
|
Candidatus Blochmanniella
|
RISB2448 |
Camponotus floridanus
Order: Hymenoptera
|
nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling
|
0.08% |
2.8
|
|
Streptococcus
|
RISB2625 |
Galleria mellonella
Order: Lepidoptera
|
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
|
0.72% |
2.7
|
|
Bacteroides
|
RISB0090 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.56% |
2.7
|
|
Bacteroides
|
RISB1183 |
Oryzaephilus surinamensis
Order: Coleoptera
|
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
|
0.56% |
2.6
|
|
Yersinia
|
RISB0492 |
Cimex hemipterus
Order: Hemiptera
|
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
|
0.11% |
2.5
|
|
Rahnella
|
RISB1800 |
Dendroctonus valens
Order: Coleoptera
|
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth
|
0.22% |
2.4
|
|
Streptococcus
|
RISB2624 |
Reticulitermes flavipes
Order: Blattodea
|
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
|
0.72% |
2.4
|
|
Rahnella
|
RISB0741 |
Dendroctonus ponderosae
Order: Coleoptera
|
R. aquatilis decreased (−)-α-pinene (38%) and (+)-α-pinene (46%) by 40% and 45% (by GC-MS), respectively
|
0.22% |
2.3
|
|
Streptococcus
|
RISB2604 |
Homona magnanima
Order: Lepidoptera
|
influence the growth of Bacillus thuringiensis in the larvae
|
0.72% |
1.9
|
|
Corynebacterium
|
RISB0363 |
Pagiophloeus tsushimanus
Order: Coleoptera
|
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
|
0.12% |
1.9
|
|
Corynebacterium
|
RISB0531 |
Helicoverpa armigera
Order: Lepidoptera
|
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
|
0.12% |
1.8
|
|
Halomonas
|
RISB1808 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.36% |
1.7
|
|
Leuconostoc
|
RISB0812 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-18 oxidation pathway
|
0.17% |
1.6
|
|
Variovorax
|
RISB2153 |
Osmia bicornis
Order: Hymenoptera
|
may be essential to support Osmia larvae in their nutrient uptake
|
0.10% |
1.4
|
|
Duganella
|
RISB2152 |
Osmia bicornis
Order: Hymenoptera
|
may be essential to support Osmia larvae in their nutrient uptake
|
0.09% |
1.4
|
|
Neokomagataea
|
RISB1560 |
Oecophylla smaragdina
Order: Hymenoptera
|
may be related with the formic acid production
|
0.34% |
1.3
|
|
Paraclostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.19% |
1.3
|
|
Mycobacterium
|
RISB1156 |
Nicrophorus concolor
Order: Coleoptera
|
produces Antimicrobial compounds
|
0.37% |
1.0
|
|
Corynebacterium
|
RISB2360 |
Bombyx mori
Order: Lepidoptera
|
producing lipase in a gut environment
|
0.12% |
0.9
|
|
Priestia
|
RISB0839 |
Helicoverpa armigera
Order: Lepidoptera
|
producing amylase
|
0.43% |
0.8
|
|
Treponema
|
RISB0169 |
Reticulitermes flaviceps
Order: Blattodea
|
None
|
0.53% |
0.5
|
|
Gilliamella
|
RISB0620 |
Spodoptera frugiperda
Order: Lepidoptera
|
degrade amygdalin
|
0.09% |
0.4
|
|
Halomonas
|
RISB1374 |
Bemisia tabaci
Order: Hemiptera
|
None
|
0.36% |
0.4
|
|
Cupriavidus
|
RISB0694 |
Alydus tomentosus
Order: Hemiptera
|
None
|
0.30% |
0.3
|
|
Helicobacter
|
RISB0662 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.18% |
0.2
|
|
Legionella
|
RISB1687 |
Polyplax serrata
Order: Phthiraptera
|
None
|
0.16% |
0.2
|
|
Yersinia
|
RISB0407 |
Anaphes nitens
Order: Hymenoptera
|
None
|
0.11% |
0.1
|
|
Dysgonomonas
|
RISB1481 |
Brachinus elongatulus
Order: Coleoptera
|
None
|
0.09% |
0.1
|
|
Gilliamella
|
RISB1945 |
Apis cerana
Order: Hymenoptera
|
None
|
0.09% |
0.1
|
|
Bifidobacterium
|
RISB1944 |
Apis cerana
Order: Hymenoptera
|
None
|
0.07% |
0.1
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.