SRR24994207 - Ceratosolen
Basic Information
Run: SRR24994207
Assay Type: WGS
Bioproject: PRJNA986526
Biosample: SAMN35841277
Bytes: 94594234
Center Name: NMRC_BDRD_BFX
Sequencing Information
Instrument: Illumina MiSeq
Library Layout: PAIRED
Library Selection: cDNA
Platform: ILLUMINA
Quality Control Information
Filter Percentage: -
QC Average Length: -
Retained Reads: -
Geographic Information
Country: Uganda
Continent: Africa
Location Name: Uganda
Latitude/Longitude: 0.228056 N 30.505292 E
Sample Information
Host: Ceratosolen
Isolation: synconia of Ficus trees
Biosample Model: Metagenome or environmental
Collection Date: 2016-01
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
| Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
|---|---|---|---|---|---|
|
Sphingobacterium multivorum
Species-level Match
|
RISB0671 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
17.68% |
22.7
|
|
Streptomyces sp. T12
Species-level Match
Host Order Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.70% |
19.7
|
|
Streptomyces sp. T12
Species-level Match
Host Order Match
|
RISB2334 |
Sirex noctilio
Order: Hymenoptera
|
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
|
0.70% |
19.4
|
|
Streptomyces sp. T12
Species-level Match
Host Order Match
|
RISB1134 |
mud dauber wasp
Order: Hymenoptera
|
secondary metabolites derived from a Streptomyces sp. displayed significant inhibitory activity against hexokinase II
|
0.70% |
18.0
|
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB2004 |
Trichogramma chilonis
Order: Hymenoptera
|
could significantly increase both female count
|
0.92% |
16.8
|
|
Pseudomonas sp. ABC1
Species-level Match
Host Order Match
|
RISB1564 |
Liometopum apiculatum
Order: Hymenoptera
|
None
|
0.68% |
15.7
|
|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB1564 |
Liometopum apiculatum
Order: Hymenoptera
|
None
|
0.27% |
15.3
|
|
Pseudomonas sp. MM211
Species-level Match
Host Order Match
|
RISB1564 |
Liometopum apiculatum
Order: Hymenoptera
|
None
|
0.08% |
15.1
|
|
Acinetobacter sp. WCHA55
Species-level Match
|
RISB0730 |
Curculio chinensis
Order: Coleoptera
|
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
|
3.79% |
13.5
|
|
Acinetobacter sp. WCHA55
Species-level Match
|
RISB1978 |
Blattella germanica
Order: Blattodea
|
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
|
3.79% |
12.6
|
|
Acinetobacter sp. WCHA55
Species-level Match
|
RISB1500 |
Lymantria dispar
Order: Lepidoptera
|
Bacteria isolated from a host plant had a glycoside-degrading activity, which enhanced growth of the moth when larvae were fed on a toxin-containing diet
|
3.79% |
11.9
|
|
Klebsiella pneumoniae
Species-level Match
|
RISB2185 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
1.29% |
11.3
|
|
Raoultella sp. HC6
Species-level Match
|
RISB2226 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
2.91% |
11.3
|
|
Stenotrophomonas sp. SAU14A_NAIMI4_5
Species-level Match
|
RISB0325 |
Pharaxonotha floridana
Order: Coleoptera
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores
|
0.93% |
10.9
|
|
Sphingobacterium sp.
Species-level Match
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
2.46% |
10.8
|
|
Enterobacter sp. T2
Species-level Match
|
RISB0893 |
Bactrocera dorsalis
Order: Diptera
|
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
|
0.41% |
10.4
|
|
Bacillus cereus
Species-level Match
|
RISB2161 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.39% |
10.4
|
|
Stenotrophomonas sp. 610A2
Species-level Match
|
RISB0325 |
Pharaxonotha floridana
Order: Coleoptera
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores
|
0.17% |
10.2
|
|
Klebsiella oxytoca
Species-level Match
|
RISB0130 |
Ceratitis capitata
Order: Diptera
|
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
|
0.09% |
10.1
|
|
Yersinia
Host Order Match
|
RISB0407 |
Anaphes nitens
Order: Hymenoptera
|
None
|
0.04% |
10.0
|
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
0.53% |
9.9
|
|
Sphingobacterium sp. UGAL515B_05
Species-level Match
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
1.30% |
9.6
|
|
Enterobacter sp. T2
Species-level Match
|
RISB1338 |
Ceratitis capitata
Order: Diptera
|
Enterobacter sp. AA26 dry biomass can fully replace the brewer’s yeast as a protein source in medfly larval diet without any effect on the productivity and the biological quality of reared medfly of VIENNA 8 GSS
|
0.41% |
9.6
|
|
Bacillus cereus
Species-level Match
|
RISB2489 |
Anticarsia gemmatalis
Order: Lepidoptera
|
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
|
0.39% |
9.4
|
|
Klebsiella michiganensis
Species-level Match
|
RISB1052 |
Bactrocera dorsalis
Order: Diptera
|
K. michiganensis BD177 has the strain-specific ability to provide three essential amino acids (phenylalanine, tryptophan and methionine) and two vitamins B (folate and riboflavin) to B. dorsalis
|
0.30% |
9.2
|
|
Citrobacter amalonaticus
Species-level Match
|
RISB0192 |
Hermetia illucens
Order: Diptera
|
can directly promote the expression of two gene families related to intestinal protein metabolism: Hitryp serine protease trypsin family and Himtp metallopeptidase family
|
0.60% |
9.0
|
|
Enterobacter sp. T2
Species-level Match
|
RISB2221 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.41% |
8.8
|
|
Raoultella sp. HC6
Species-level Match
|
RISB1575 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
2.91% |
8.6
|
|
Citrobacter sp. RHB25-C09
Species-level Match
|
RISB1503 |
Bactrocera dorsalis
Order: Diptera
|
Pesticide-degrading bacteria were frequently detected from pesticide-resistant insects. Susceptible insects became resistant after inoculation of the pesticide-degrading symbiont
|
0.03% |
8.6
|
|
Escherichia coli
Species-level Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
0.53% |
8.3
|
|
Citrobacter freundii complex sp. CFNIH2
Species-level Match
|
RISB0517 |
Leptinotarsa decemlineata
Order: Coleoptera
|
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
|
0.16% |
8.1
|
|
Bacillus cereus
Species-level Match
|
RISB2237 |
Anticarsia gemmatalis
Order: Lepidoptera
|
mitigation of the negative effects of proteinase inhibitors produced by the host plant
|
0.39% |
7.1
|
|
Escherichia coli
Species-level Match
|
RISB2120 |
Galleria mellonella
Order: Lepidoptera
|
mediate trans-generational immune priming
|
0.53% |
6.4
|
|
Salmonella enterica
Species-level Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
1.27% |
6.3
|
|
Chryseobacterium sp. Y16C
Species-level Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.14% |
5.7
|
|
Chryseobacterium sp. ZHDP1
Species-level Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.05% |
5.6
|
|
Rhodobacter
|
RISB0138 |
Coccinella septempunctata
Order: Coleoptera
|
Rhodanobacter genera can utilize various carbon sources, including cellobiose. In larvae of longhorned beetles that feed on plants rich in carbohydrates (cellulose and hemicellulose) and lignin, Rhodanobacter can help the larvae digest more carbon nutrients through carbon sequestration
|
0.09% |
5.1
|
|
Staphylococcus
|
RISB0945 |
Callosobruchus maculatus
Order: Coleoptera
|
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
|
0.06% |
5.1
|
|
Pantoea vagans
Species-level Match
|
RISB1842 |
Macrotermes natalensis
Order: Blattodea
|
None
|
0.05% |
5.1
|
|
Dysgonomonas
|
RISB1235 |
Hermetia illucens
Order: Diptera
|
provides the tools for degrading of a broad range of substrates
|
3.35% |
4.6
|
|
Staphylococcus
|
RISB2497 |
Anticarsia gemmatalis
Order: Lepidoptera
|
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
|
0.06% |
4.0
|
|
Symbiopectobacterium
|
RISB1889 |
Pseudococcus longispinus
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.05% |
3.4
|
|
Dysgonomonas
|
RISB1481 |
Brachinus elongatulus
Order: Coleoptera
|
None
|
3.35% |
3.4
|
|
Comamonas
|
RISB2021 |
Bactrocera dorsalis
Order: Diptera
|
This group in the immature stages may be helping the insects to cope with oxidative stress by supplementing available oxygen.
|
0.50% |
3.0
|
|
Staphylococcus
|
RISB0427 |
Anopheles sinensis
Order: Diptera
|
be identified in each part of the hyperendemic area of this study has a potential role to interact with malaria parasites.
|
0.06% |
2.5
|
|
Yersinia
|
RISB0492 |
Cimex hemipterus
Order: Hemiptera
|
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
|
0.04% |
2.5
|
|
Rhizobium
|
RISB0135 |
Coccinella septempunctata
Order: Coleoptera
|
be commonly found in plant roots and they all have nitrogen fixation abilities
|
0.20% |
1.8
|
|
Halomonas
|
RISB1808 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.32% |
1.6
|
|
Vibrio
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.09% |
1.4
|
|
Comamonas
|
RISB1875 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.50% |
0.8
|
|
Comamonas
|
RISB1061 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.50% |
0.7
|
|
Halomonas
|
RISB1374 |
Bemisia tabaci
Order: Hemiptera
|
None
|
0.32% |
0.3
|
|
Flavobacterium
|
RISB0659 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.31% |
0.3
|
|
Selenomonas
|
RISB1305 |
Aphis gossypii
Order: Hemiptera
|
None
|
0.19% |
0.2
|
|
Myroides
|
RISB0626 |
Musca altica
Order: Diptera
|
None
|
0.13% |
0.1
|
|
Weeksella
|
RISB1265 |
Rheumatobates bergrothi
Order: Hemiptera
|
None
|
0.08% |
0.1
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.