SRR24762874 - Haemagogus janthinomys
Basic Information
Run: SRR24762874
Assay Type: WGS
Bioproject: PRJNA918574
Biosample: SAMN35436896
Bytes: 3188248487
Center Name: EVANDRO CHAGAS INSTITUTE
Sequencing Information
Instrument: NextSeq 500
Library Layout: PAIRED
Library Selection: cDNA
Platform: ILLUMINA
Geographic Information
Country: Brazil
Continent: South America
Location Name: Brazil: Curionopolis\, Para State
Latitude/Longitude: 6.267730 S 49.710321 W
Sample Information
Host: Haemagogus janthinomys
Isolation: Serra Leste
Biosample Model: Metagenome or environmental
Collection Date: 2019-10
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Klebsiella pneumoniae
Species-level Match
Host Order Match
|
RISB1771 |
Muscidae
Order: Diptera
|
None
|
12.46% |
27.5
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1227 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
9.69% |
27.4
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1141 |
Hermetia illucens
Order: Diptera
|
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
|
9.69% |
26.5
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1401 |
Delia antiqua
Order: Diptera
|
suppressed Beauveria bassiana conidia germination and hyphal growth
|
9.69% |
26.0
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB1769 |
Calliphoridae
Order: Diptera
|
None
|
7.68% |
22.7
|
Klebsiella pneumoniae
Species-level Match
|
RISB2185 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
12.46% |
22.5
|
Enterobacter sp. T2
Species-level Match
Host Order Match
|
RISB0893 |
Bactrocera dorsalis
Order: Diptera
|
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
|
0.16% |
20.2
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB0131 |
Ceratitis capitata
Order: Diptera
|
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
|
0.07% |
20.1
|
Listeria monocytogenes
Species-level Match
Host Order Match
|
RISB2308 |
Drosophila melanogaster
Order: Diptera
|
L. monocytogenes infection disrupts host energy metabolism by depleting energy stores (triglycerides and glycogen) and reducing metabolic pathway activity (beta-oxidation and glycolysis). The infection affects antioxidant defense by reducing uric acid levels and alters amino acid metabolism. These metabolic changes are accompanied by melanization, potentially linked to decreased tyrosine levels.
|
0.02% |
20.0
|
Enterobacter sp. T2
Species-level Match
Host Order Match
|
RISB1338 |
Ceratitis capitata
Order: Diptera
|
Enterobacter sp. AA26 dry biomass can fully replace the brewer’s yeast as a protein source in medfly larval diet without any effect on the productivity and the biological quality of reared medfly of VIENNA 8 GSS
|
0.16% |
19.4
|
Serratia marcescens
Species-level Match
Host Order Match
|
RISB1291 |
Aedes aegypti
Order: Diptera
|
facilitates arboviral infection through a secreted protein named SmEnhancin, which digests membrane-bound mucins on the mosquito gut epithelia, thereby enhancing viral dissemination.
|
0.05% |
18.7
|
Klebsiella pneumoniae
Species-level Match
|
RISB2459 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
12.46% |
18.5
|
Paenibacillus sp. Y5S-9
Species-level Match
Host Order Match
|
RISB0774 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.20% |
18.5
|
Arthrobacter sp. TMP15
Species-level Match
Host Order Match
|
RISB0769 |
Delia antiqua
Order: Diptera
|
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.06% |
18.3
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB0772 |
Delia antiqua
Order: Diptera
|
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.05% |
18.3
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB0113 |
Bactrocera dorsalis
Order: Diptera
|
increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities
|
0.07% |
18.1
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB0008 |
Phormia regina
Order: Diptera
|
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
0.05% |
18.0
|
Citrobacter freundii
Species-level Match
Host Order Match
|
RISB1221 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.20% |
17.9
|
Serratia marcescens
Species-level Match
Host Order Match
|
RISB0009 |
Phormia regina
Order: Diptera
|
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
0.05% |
17.7
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB1411 |
Bactrocera dorsalis
Order: Diptera
|
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
|
0.15% |
17.7
|
Salmonella enterica
Species-level Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
12.43% |
17.4
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
7.68% |
17.0
|
Enterobacter sp. T2
Species-level Match
Host Order Match
|
RISB1311 |
Ceratitis capitata
Order: Diptera
|
it was shown to have positive effects in rearing efficiency when used as larval probiotics
|
0.16% |
17.0
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB0611 |
Bactrocera dorsalis
Order: Diptera
|
may hydrolysing nitrogenous waste and providing metabolizable nitrogen for B. dorsalis
|
0.05% |
16.8
|
Citrobacter freundii
Species-level Match
Host Order Match
|
RISB1396 |
Delia antiqua
Order: Diptera
|
suppressed Beauveria bassiana conidia germination and hyphal growth
|
0.20% |
16.5
|
Bacillus sp. FJAT-22090
Species-level Match
Host Order Match
|
RISB0791 |
Anopheles barbirostris
Order: Diptera
|
without this midgut flora showed delayed development to become adult
|
0.01% |
16.4
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB0095 |
Bactrocera minax
Order: Diptera
|
egrade phenols in unripe citrus in B. minax larvae
|
0.15% |
16.2
|
Wolbachia
Host Order Match
|
RISB0766 |
Aedes fluviatilis
Order: Diptera
|
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
|
1.12% |
16.1
|
Bacillus thuringiensis
Species-level Match
Host Order Match
|
RISB0820 |
Simulium tani
Order: Diptera
|
show resistance to some antibiotics
|
0.36% |
16.1
|
Serratia marcescens
Species-level Match
Host Order Match
|
RISB0096 |
Bactrocera minax
Order: Diptera
|
egrade phenols in unripe citrus in B. minax larvae
|
0.05% |
16.1
|
Lactiplantibacillus plantarum
Species-level Match
Host Order Match
|
RISB0674 |
Drosophila melanogaster
Order: Diptera
|
could effectively inhibit fungal spore germinations
|
0.02% |
16.0
|
Wolbachia
Host Order Match
|
RISB0779 |
Drosophila melanogaster
Order: Diptera
|
Wolbachia infection affects differential gene expression in Drosophila testis.Genes involved in carbohydrate metabolism, lysosomal degradation, proteolysis, lipid metabolism, and immune response were upregulated in the presence of Wolbachia
|
1.12% |
15.9
|
Wolbachia
Host Order Match
|
RISB1408 |
Anastrepha fraterculus
Order: Diptera
|
Wolbachia is the only known reproductive symbiont present in these morphotypes. Wolbachia reduced the ability for embryonic development in crosses involving cured females and infected males within each morphotype (uni-directional CI).
|
1.12% |
15.8
|
Acinetobacter sp. ESL0695
Species-level Match
Host Order Match
|
RISB2083 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.23% |
15.8
|
Paenibacillus sp. Y5S-9
Species-level Match
Host Order Match
|
RISB2098 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.20% |
15.8
|
Citrobacter freundii
Species-level Match
Host Order Match
|
RISB1162 |
Bactrocera dorsalis
Order: Diptera
|
Promote the growth of larvae
|
0.20% |
15.8
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB1167 |
Bactrocera dorsalis
Order: Diptera
|
Promote the growth of larvae
|
0.07% |
15.6
|
Acinetobacter sp. KCTC 92772
Species-level Match
Host Order Match
|
RISB2083 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.02% |
15.6
|
Chryseobacterium sp. MA9
Species-level Match
Host Order Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.02% |
15.6
|
Providencia alcalifaciens
Species-level Match
Host Order Match
|
RISB1168 |
Bactrocera dorsalis
Order: Diptera
|
Promote the growth of larvae
|
0.01% |
15.6
|
Streptomyces sp. T12
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
6.53% |
15.5
|
Buchnera aphidicola
Species-level Match
Host Order Match
|
RISB0051 |
Episyrphus balteatus
Order: Diptera
|
None
|
0.48% |
15.5
|
Bacillus cereus
Species-level Match
Host Order Match
|
RISB1872 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.15% |
15.4
|
Escherichia coli
Species-level Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
7.68% |
15.4
|
Streptomyces sp. T12
Species-level Match
|
RISB2334 |
Sirex noctilio
Order: Hymenoptera
|
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
|
6.53% |
15.2
|
Spiroplasma
Host Order Match
|
RISB1796 |
Drosophila neotestacea
Order: Diptera
|
when parasitized by the nematode Howardula aoronymphium, Spiroplasma encodes a ribosome-inactivating protein (RIP) related to Shiga-like toxins from enterohemorrhagic Escherichia coli and that Howardula ribosomal RNA (rRNA) is depurinated during Spiroplasma-mediated protection of D. neotestacea
|
0.06% |
15.1
|
Lactobacillus
Host Order Match
|
RISB1866 |
Drosophila melanogaster
Order: Diptera
|
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
|
0.03% |
15.0
|
Lactiplantibacillus plantarum
Species-level Match
Host Order Match
|
RISB0608 |
Drosophila melanogaster
Order: Diptera
|
None
|
0.02% |
15.0
|
Variovorax sp. PAMC26660
Species-level Match
Host Order Match
|
RISB1712 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.02% |
15.0
|
Acetobacter
Host Order Match
|
RISB1865 |
Drosophila melanogaster
Order: Diptera
|
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
|
0.02% |
15.0
|
Spiroplasma
Host Order Match
|
RISB1926 |
Anopheles gambiae
Order: Diptera
|
may have reproductive interactions with their mosquito hosts,either providing an indirect fitness advantage to females by inducing male killing or by directly protecting the host against natural pathogens
|
0.06% |
14.1
|
Streptomyces sp. T12
Species-level Match
|
RISB1134 |
mud dauber wasp
Order: Hymenoptera
|
secondary metabolites derived from a Streptomyces sp. displayed significant inhibitory activity against hexokinase II
|
6.53% |
13.9
|
Spiroplasma
Host Order Match
|
RISB2026 |
Drosophila hydei
Order: Diptera
|
Spiroplasma protect their host against parasitoid attack. The Spiroplasma-conferred protection is partial and flies surviving a wasp attack have reduced adult longevity and fecundity
|
0.06% |
13.7
|
Acetobacter
Host Order Match
|
RISB0961 |
Drosophila melanogaster
Order: Diptera
|
The exist of Acetobacter had a balancing effect on food ingestion when carbohydrate levels were high in the warmer months, stabilizing fitness components of flies across the year.
|
0.02% |
13.6
|
Sphingobacterium
Host Order Match
|
RISB1226 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.02% |
12.7
|
Shewanella
Host Order Match
|
RISB1924 |
Anopheles gambiae
Order: Diptera
|
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
|
0.15% |
12.7
|
Lactobacillus
Host Order Match
|
RISB0185 |
Drosophila melanogaster
Order: Diptera
|
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
|
0.03% |
12.3
|
Acetobacter
Host Order Match
|
RISB0184 |
Drosophila melanogaster
Order: Diptera
|
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
|
0.02% |
12.3
|
Proteus
Host Order Match
|
RISB2315 |
Aedes aegypti
Order: Diptera
|
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
|
0.10% |
12.2
|
Arsenophonus
Host Order Match
|
RISB1141 |
Hermetia illucens
Order: Diptera
|
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
|
0.08% |
11.9
|
Lactobacillus
Host Order Match
|
RISB1714 |
Drosophila melanogaster
Order: Diptera
|
It has the potential to reduce IMI-induced susceptibility to infection.
|
0.03% |
11.5
|
Sphingobacterium
Host Order Match
|
RISB1400 |
Delia antiqua
Order: Diptera
|
suppressed Beauveria bassiana conidia germination and hyphal growth
|
0.02% |
11.4
|
Photorhabdus
Host Order Match
|
RISB0532 |
Drosophila melanogaster
Order: Diptera
|
produces toxin complex (Tc) toxins as major virulence factors
|
0.01% |
11.2
|
Clostridium sp. MB40-C1
Species-level Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
1.85% |
11.1
|
Arsenophonus
Host Order Match
|
RISB1173 |
Melophagus ovinus
Order: Diptera
|
participation of symbionts on blood-digestion
|
0.08% |
11.0
|
Aeromonas
Host Order Match
|
RISB2086 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.03% |
10.6
|
Buchnera aphidicola
Species-level Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
0.48% |
10.5
|
Peribacillus
Host Order Match
|
RISB1877 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.04% |
10.3
|
Buchnera aphidicola
Species-level Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
0.48% |
10.2
|
Pantoea agglomerans
Species-level Match
|
RISB2197 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.24% |
10.2
|
Pectobacterium
Host Order Match
|
RISB1772 |
Muscidae
Order: Diptera
|
None
|
0.18% |
10.2
|
Proteus
Host Order Match
|
RISB0054 |
Episyrphus balteatus
Order: Diptera
|
None
|
0.10% |
10.1
|
Arsenophonus
Host Order Match
|
RISB1853 |
Lipoptena cervi
Order: Diptera
|
None
|
0.08% |
10.1
|
Paenibacillus polymyxa
Species-level Match
|
RISB2195 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.03% |
10.0
|
Cellulosimicrobium sp. TH-20
Species-level Match
|
RISB2182 |
Armadillidae
Order: Isopoda
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.02% |
10.0
|
Acinetobacter sp. ESL0695
Species-level Match
|
RISB0730 |
Curculio chinensis
Order: Coleoptera
|
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
|
0.23% |
9.9
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.08% |
9.9
|
Pseudomonas sp. CCC3.1
Species-level Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.06% |
9.9
|
Clostridium sp. AWRP
Species-level Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.25% |
9.5
|
Clostridium sp. 001
Species-level Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.05% |
9.3
|
Staphylococcus xylosus
Species-level Match
|
RISB2497 |
Anticarsia gemmatalis
Order: Lepidoptera
|
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
|
0.03% |
9.0
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB2224 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.08% |
8.4
|
Blattabacterium cuenoti
Species-level Match
|
RISB0133 |
Panesthiinae
Order: Blattodea
|
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
|
0.04% |
8.0
|
Enterococcus faecalis
Species-level Match
|
RISB0497 |
Cryptolestes ferrugineus
Order: Coleoptera
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
|
0.15% |
7.7
|
Rickettsiella
|
RISB2479 |
Acyrthosiphon pisum
Order: Hemiptera
|
changes the insects’ body color from red to green in natural populations, the infection increased amounts of blue-green polycyclic quinones, whereas it had less of an effect on yellow-red carotenoid pigments
|
3.50% |
7.6
|
Pantoea agglomerans
Species-level Match
|
RISB2579 |
Schistocerca gregaria
Order: Orthoptera
|
produces an antifungal and antibacterial molecule serving as antimicrobial defense against gut pathogens
|
0.24% |
7.3
|
Rickettsiella
|
RISB2262 |
Acyrthosiphon pisum
Order: Hemiptera
|
against this entomopathogen Pandora neoaphidis, reduce mortality and also decrease fungal sporulation on dead aphids which may help protect nearby genetically identical insects
|
3.50% |
7.0
|
Staphylococcus xylosus
Species-level Match
|
RISB2247 |
Anticarsia gemmatalis
Order: Lepidoptera
|
mitigation of the negative effects of proteinase inhibitors produced by the host plant
|
0.03% |
6.8
|
Frischella perrara
Species-level Match
|
RISB2028 |
Diceroprocta semicincta
Order: Hemiptera
|
causes the formation of a scab-like structure on the gut epithelium of its host
|
0.03% |
6.6
|
Rickettsiella
|
RISB1739 |
Acyrthosiphon pisum
Order: Hemiptera
|
in an experiment with a single-injected isolate of Rickettsiella sp. wasps were also attracted to plants fed on by aphids without secondary symbionts
|
3.50% |
6.5
|
Xenorhabdus bovienii
Species-level Match
|
RISB2270 |
Acyrthosiphon pisum
Order: Hemiptera
|
have the gene PIN1 encoding the protease inhibitor protein against aphids
|
0.02% |
6.5
|
Pantoea agglomerans
Species-level Match
|
RISB0379 |
Frankliniella occidentalis
Order: Thysanoptera
|
gut symbionts are required for their development
|
0.24% |
6.2
|
Staphylococcus xylosus
Species-level Match
|
RISB2246 |
Anticarsia gemmatalis
Order: Lepidoptera
|
Against plant-derived protease inhibitor; pest control
|
0.03% |
6.1
|
Rhizobium
|
RISB0135 |
Coccinella septempunctata
Order: Coleoptera
|
be commonly found in plant roots and they all have nitrogen fixation abilities
|
4.24% |
5.8
|
Blattabacterium cuenoti
Species-level Match
|
RISB0518 |
Cryptocercus punctulatus
Order: Blattodea
|
collaborative arginine biosynthesis
|
0.04% |
5.7
|
Halomonas
|
RISB1808 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
4.38% |
5.7
|
Blattabacterium cuenoti
Species-level Match
|
RISB0093 |
Blattella germanica
Order: Blattodea
|
obligate endosymbiont
|
0.04% |
5.5
|
Burkholderia
|
RISB1172 |
Lagria villosa
Order: Coleoptera
|
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
|
0.44% |
5.4
|
Candidatus Erwinia haradaeae
Species-level Match
|
RISB1632 |
Lachninae
Order: Hemiptera
|
None
|
0.01% |
5.0
|
Rickettsia bellii
Species-level Match
|
RISB1897 |
Bemisia tabaci
Order: Hemiptera
|
None
|
0.01% |
5.0
|
Deinococcus
|
RISB1649 |
Camponotus japonicus
Order: Hymenoptera
|
Four new aminoglycolipids, deinococcucins A–D, were discovered from a Deinococcus sp. strain isolated from the gut of queen carpenter ants, Camponotus japonicus, showed functional ability of inducing the quinone reductase production in host cells
|
0.07% |
5.0
|
Burkholderia
|
RISB1729 |
Lagria hirta
Order: Coleoptera
|
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
|
0.44% |
4.7
|
Burkholderia
|
RISB0402 |
Riptortus pedestris
Order: Hemiptera
|
symbiont colonization induces the development of the midgut crypts via finely regulating the enterocyte cell cycles, enabling it to stably and abundantly colonize the generated spacious crypts of the bean bug host
|
0.44% |
4.7
|
Halomonas
|
RISB1374 |
Bemisia tabaci
Order: Hemiptera
|
None
|
4.38% |
4.4
|
Yersinia
|
RISB0492 |
Cimex hemipterus
Order: Hemiptera
|
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
|
1.75% |
4.2
|
Photorhabdus
|
RISB2532 |
Manduca sexta
Order: Lepidoptera
|
produces a small-molecule antibiotic (E)-1,3-dihydroxy-2-(isopropyl)-5-(2-phenylethenyl)benzene (ST) that also acts as an inhibitor of phenoloxidase (PO) in the insect host Manduca sexta.
|
0.01% |
3.8
|
Pectobacterium
|
RISB1889 |
Pseudococcus longispinus
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.18% |
3.5
|
Sphingobacterium
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.02% |
3.4
|
Vibrio
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
1.93% |
3.3
|
Carnobacterium
|
RISB1378 |
Thitarodes pui
Order: Lepidoptera
|
promote the growth of Thitarodes larvae, elevate bacterial diversity, maintain a better balance of intestinal flora, and act as a probiotic in Thitarodes
|
0.02% |
3.1
|
Proteus
|
RISB0001 |
Leptinotarsa decemlineata
Order: Coleoptera
|
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
|
0.10% |
2.8
|
Photorhabdus
|
RISB2573 |
Manduca sexta
Order: Lepidoptera
|
the bacteria are symbiotic with entomopathogenic nematodes but become pathogenic on release from the nematode into the insect blood system
|
0.01% |
2.8
|
Bartonella
|
RISB1673 |
Apis mellifera
Order: Hymenoptera
|
a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream
|
0.05% |
2.6
|
Carnobacterium
|
RISB1693 |
Plutella xylostella
Order: Lepidoptera
|
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
|
0.02% |
2.5
|
Pseudonocardia
|
RISB0947 |
Acromyrmex
Order: Hymenoptera
|
Pseudonocardia in the Acromyrmex leaf-cutter ants as a protective partner against the entomopathogenic fungus Metarhizium
|
0.03% |
2.5
|
Bacteroides
|
RISB0256 |
Leptocybe invasa
Order: Hymenoptera
|
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
|
0.11% |
2.4
|
Bacteroides
|
RISB0090 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.11% |
2.2
|
Bacteroides
|
RISB1183 |
Oryzaephilus surinamensis
Order: Coleoptera
|
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
|
0.11% |
2.2
|
Streptococcus
|
RISB2625 |
Galleria mellonella
Order: Lepidoptera
|
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
|
0.11% |
2.1
|
Pseudonocardia
|
RISB1218 |
Mycocepurus smithii
Order: Hymenoptera
|
produce secondary metabolites with antibiotic activity that protects the fungus garden against pathogens
|
0.03% |
2.1
|
Sphingomonas
|
RISB0420 |
Aphis gossypii
Order: Hemiptera
|
Sphingomonas could mediate A. gossypii resistance to imidacloprid by hydroxylation and nitroreduction
|
0.03% |
2.1
|
Corynebacterium
|
RISB0363 |
Pagiophloeus tsushimanus
Order: Coleoptera
|
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
|
0.14% |
1.9
|
Sphingomonas
|
RISB1307 |
Aphis gossypii
Order: Hemiptera
|
have been previously described in associations with phloem-feeding insects, in low abundances
|
0.03% |
1.9
|
Corynebacterium
|
RISB0531 |
Helicoverpa armigera
Order: Lepidoptera
|
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
|
0.14% |
1.8
|
Yersinia
|
RISB0407 |
Anaphes nitens
Order: Hymenoptera
|
None
|
1.75% |
1.8
|
Streptococcus
|
RISB2624 |
Reticulitermes flavipes
Order: Blattodea
|
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
|
0.11% |
1.8
|
Sphingomonas
|
RISB0134 |
Spodoptera frugiperda
Order: Lepidoptera
|
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
|
0.03% |
1.7
|
Bradyrhizobium
|
RISB0135 |
Coccinella septempunctata
Order: Coleoptera
|
be commonly found in plant roots and they all have nitrogen fixation abilities
|
0.08% |
1.6
|
Carnobacterium
|
RISB1692 |
Plutella xylostella
Order: Lepidoptera
|
participate in the synthesis of host lacking amino acids histidine and threonine
|
0.02% |
1.6
|
Nostoc
|
RISB0812 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-18 oxidation pathway
|
0.08% |
1.5
|
Streptococcus
|
RISB2604 |
Homona magnanima
Order: Lepidoptera
|
influence the growth of Bacillus thuringiensis in the larvae
|
0.11% |
1.3
|
Pectobacterium
|
RISB0798 |
Pseudoregma bambucicola
Order: Hemiptera
|
may help P. bambucicola feed on the stalks of bamboo
|
0.18% |
1.2
|
Lysinibacillus
|
RISB1416 |
Psammotermes hypostoma
Order: Blattodea
|
isolates showed significant cellulolytic activity
|
0.07% |
1.1
|
Corynebacterium
|
RISB2360 |
Bombyx mori
Order: Lepidoptera
|
producing lipase in a gut environment
|
0.14% |
0.9
|
Aeromonas
|
RISB2456 |
Bombyx mori
Order: Lepidoptera
|
able to utilize the CMcellulose and xylan
|
0.03% |
0.9
|
Gordonia
|
RISB1912 |
Hyles euphorbiae
Order: Lepidoptera
|
able to degrade alkaloids and/or latex
|
0.04% |
0.8
|
Priestia
|
RISB0839 |
Helicoverpa armigera
Order: Lepidoptera
|
producing amylase
|
0.10% |
0.4
|
Aeromonas
|
RISB1145 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.03% |
0.4
|
Lysinibacillus
|
RISB1066 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.07% |
0.3
|
Flavobacterium
|
RISB0659 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.19% |
0.2
|
Cupriavidus
|
RISB0694 |
Alydus tomentosus
Order: Hemiptera
|
None
|
0.18% |
0.2
|
Legionella
|
RISB1687 |
Polyplax serrata
Order: Phthiraptera
|
None
|
0.15% |
0.2
|
Ralstonia
|
RISB0243 |
Spodoptera frugiperda
Order: Lepidoptera
|
None
|
0.11% |
0.1
|
Micromonospora
|
RISB2033 |
Palomena viridissima
Order: Hemiptera
|
None
|
0.10% |
0.1
|
Neisseria
|
RISB0512 |
Plutella xylostella
Order: Lepidoptera
|
None
|
0.05% |
0.1
|
Helicobacter
|
RISB0662 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.04% |
0.0
|
Candidatus Profftia
|
RISB1664 |
Adelgidae
Order: Hemiptera
|
None
|
0.03% |
0.0
|
Paraburkholderia
|
RISB0125 |
Physopelta gutta
Order: Hemiptera
|
None
|
0.03% |
0.0
|
Metabacillus
|
RISB0902 |
Myzus persicae
Order: Hemiptera
|
None
|
0.02% |
0.0
|
Kaistia
|
RISB0829 |
Spodoptera frugiperda
Order: Lepidoptera
|
None
|
0.01% |
0.0
|
Candidatus Arthromitus
|
RISB2613 |
Multiple species
Order: None
|
None
|
0.01% |
0.0
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.