SRR24540842 - Musca domestica
Basic Information
Run: SRR24540842
Assay Type: WGS
Bioproject: PRJNA948024
Biosample: SAMN33900177
Bytes: 1142484560
Center Name: USDA
Sequencing Information
Instrument: HiSeq X Ten
Library Layout: PAIRED
Library Selection: RANDOM
Platform: ILLUMINA
Geographic Information
Country: USA
Continent: North America
Location Name: USA:TEXAS
Latitude/Longitude: not collected
Sample Information
Host: Musca domestica
Isolation: Dairy Barns
Biosample Model: Metagenome or environmental
Collection Date: 2018-06
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Klebsiella oxytoca
Species-level Match
Host Order Match
Host Species Match
|
RISB1139 |
Musca domestica
Order: Diptera
|
It is associated to newly laid housefly eggs, where it is deposited by the female, and has a role in oviposition as well as protection against potential pathogens
|
0.12% |
38.4
|
Acinetobacter sp. ANC 7201
Species-level Match
Host Order Match
|
RISB2083 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
14.62% |
30.2
|
Acinetobacter sp. ANC 7201
Species-level Match
|
RISB0730 |
Curculio chinensis
Order: Coleoptera
|
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
|
14.62% |
24.3
|
Acinetobacter sp. ANC 7201
Species-level Match
|
RISB1978 |
Blattella germanica
Order: Blattodea
|
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
|
14.62% |
23.4
|
Klebsiella oxytoca
Species-level Match
Host Order Match
|
RISB0130 |
Ceratitis capitata
Order: Diptera
|
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
|
0.12% |
20.1
|
Enterobacter sp. 638
Species-level Match
Host Order Match
|
RISB0893 |
Bactrocera dorsalis
Order: Diptera
|
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
|
0.01% |
20.0
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB0131 |
Ceratitis capitata
Order: Diptera
|
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
|
0.01% |
20.0
|
Enterobacter sp. RHBSTW-00994
Species-level Match
Host Order Match
|
RISB0893 |
Bactrocera dorsalis
Order: Diptera
|
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
|
0.00% |
20.0
|
Enterobacter sp. 638
Species-level Match
Host Order Match
|
RISB1338 |
Ceratitis capitata
Order: Diptera
|
Enterobacter sp. AA26 dry biomass can fully replace the brewer’s yeast as a protein source in medfly larval diet without any effect on the productivity and the biological quality of reared medfly of VIENNA 8 GSS
|
0.01% |
19.2
|
Klebsiella michiganensis
Species-level Match
Host Order Match
|
RISB1052 |
Bactrocera dorsalis
Order: Diptera
|
K. michiganensis BD177 has the strain-specific ability to provide three essential amino acids (phenylalanine, tryptophan and methionine) and two vitamins B (folate and riboflavin) to B. dorsalis
|
0.05% |
18.9
|
Serratia marcescens
Species-level Match
Host Order Match
|
RISB1291 |
Aedes aegypti
Order: Diptera
|
facilitates arboviral infection through a secreted protein named SmEnhancin, which digests membrane-bound mucins on the mosquito gut epithelia, thereby enhancing viral dissemination.
|
0.07% |
18.7
|
Citrobacter sp. RHBSTW-00424
Species-level Match
Host Order Match
|
RISB1503 |
Bactrocera dorsalis
Order: Diptera
|
Pesticide-degrading bacteria were frequently detected from pesticide-resistant insects. Susceptible insects became resistant after inoculation of the pesticide-degrading symbiont
|
0.12% |
18.7
|
Citrobacter sp. RHBSTW-00696
Species-level Match
Host Order Match
|
RISB1503 |
Bactrocera dorsalis
Order: Diptera
|
Pesticide-degrading bacteria were frequently detected from pesticide-resistant insects. Susceptible insects became resistant after inoculation of the pesticide-degrading symbiont
|
0.05% |
18.6
|
Citrobacter sp. 172116965
Species-level Match
Host Order Match
|
RISB1503 |
Bactrocera dorsalis
Order: Diptera
|
Pesticide-degrading bacteria were frequently detected from pesticide-resistant insects. Susceptible insects became resistant after inoculation of the pesticide-degrading symbiont
|
0.04% |
18.6
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB0772 |
Delia antiqua
Order: Diptera
|
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.20% |
18.5
|
Arthrobacter sp. YC-RL1
Species-level Match
Host Order Match
|
RISB0769 |
Delia antiqua
Order: Diptera
|
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.01% |
18.3
|
Leucobacter aridicollis
Species-level Match
Host Order Match
|
RISB0771 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.00% |
18.3
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB0008 |
Phormia regina
Order: Diptera
|
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
0.20% |
18.2
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB0113 |
Bactrocera dorsalis
Order: Diptera
|
increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities
|
0.01% |
18.0
|
Enterococcus casseliflavus
Species-level Match
Host Order Match
|
RISB0112 |
Bactrocera dorsalis
Order: Diptera
|
increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities
|
0.01% |
18.0
|
Serratia marcescens
Species-level Match
Host Order Match
|
RISB0009 |
Phormia regina
Order: Diptera
|
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
0.07% |
17.8
|
Pseudomonas protegens
Species-level Match
Host Order Match
|
RISB1224 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.04% |
17.7
|
Serratia plymuthica
Species-level Match
Host Order Match
|
RISB1225 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.00% |
17.7
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1227 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.00% |
17.7
|
Psychrobacter sp. YP14
Species-level Match
Host Order Match
|
RISB1773 |
Calliphoridae
Order: Diptera
|
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
|
0.22% |
17.7
|
Psychrobacter sp. van23A
Species-level Match
Host Order Match
|
RISB1773 |
Calliphoridae
Order: Diptera
|
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
|
0.15% |
17.6
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB1411 |
Bactrocera dorsalis
Order: Diptera
|
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
|
0.01% |
17.6
|
Psychrobacter sp. WB2
Species-level Match
Host Order Match
|
RISB1773 |
Calliphoridae
Order: Diptera
|
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
|
0.07% |
17.5
|
Comamonas terrigena
Species-level Match
Host Order Match
|
RISB2021 |
Bactrocera dorsalis
Order: Diptera
|
This group in the immature stages may be helping the insects to cope with oxidative stress by supplementing available oxygen.
|
0.01% |
17.5
|
Providencia rettgeri
Species-level Match
Host Order Match
|
RISB1001 |
Anastrepha obliqua
Order: Diptera
|
improve the sexual competitiveness of males
|
1.27% |
17.1
|
Proteus sp. ZN5
Species-level Match
Host Order Match
|
RISB2315 |
Aedes aegypti
Order: Diptera
|
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
|
0.00% |
17.1
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB0611 |
Bactrocera dorsalis
Order: Diptera
|
may hydrolysing nitrogenous waste and providing metabolizable nitrogen for B. dorsalis
|
0.20% |
16.9
|
Providencia rettgeri
Species-level Match
Host Order Match
|
RISB1169 |
Bactrocera dorsalis
Order: Diptera
|
Promote the growth of larvae
|
1.27% |
16.8
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1141 |
Hermetia illucens
Order: Diptera
|
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
|
0.00% |
16.8
|
Pantoea dispersa
Species-level Match
Host Order Match
|
RISB1413 |
Bactrocera dorsalis
Order: Diptera
|
causing female Bactrocera dorsalis laid more eggs but had shorter lifespan
|
0.00% |
16.5
|
Myroides
Host Order Match
|
RISB0626 |
Musca altica
Order: Diptera
|
None
|
6.48% |
16.5
|
Pseudomonas protegens
Species-level Match
Host Order Match
|
RISB1398 |
Delia antiqua
Order: Diptera
|
suppressed Beauveria bassiana conidia germination and hyphal growth
|
0.04% |
16.4
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1401 |
Delia antiqua
Order: Diptera
|
suppressed Beauveria bassiana conidia germination and hyphal growth
|
0.00% |
16.3
|
Lactiplantibacillus plantarum
Species-level Match
Host Order Match
|
RISB0674 |
Drosophila melanogaster
Order: Diptera
|
could effectively inhibit fungal spore germinations
|
0.01% |
16.0
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB0095 |
Bactrocera minax
Order: Diptera
|
egrade phenols in unripe citrus in B. minax larvae
|
0.01% |
16.0
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB1769 |
Calliphoridae
Order: Diptera
|
None
|
0.95% |
16.0
|
Providencia sp. PROV024
Species-level Match
Host Order Match
|
RISB1574 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
0.12% |
15.8
|
Raoultella sp. XY-1
Species-level Match
Host Order Match
|
RISB1575 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
0.03% |
15.8
|
Raoultella sp. DY2415
Species-level Match
Host Order Match
|
RISB1575 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
0.02% |
15.7
|
Raoultella sp. HC6
Species-level Match
Host Order Match
|
RISB1575 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
0.01% |
15.7
|
Aeromonas sp. FDAARGOS 1415
Species-level Match
Host Order Match
|
RISB2086 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.04% |
15.6
|
Aeromonas sp. CU5
Species-level Match
Host Order Match
|
RISB2086 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.03% |
15.6
|
Aeromonas sp. CD
Species-level Match
Host Order Match
|
RISB2086 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.02% |
15.6
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB1167 |
Bactrocera dorsalis
Order: Diptera
|
Promote the growth of larvae
|
0.01% |
15.6
|
Chryseobacterium sp. POL2
Species-level Match
Host Order Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.00% |
15.6
|
Pseudomonas protegens
Species-level Match
Host Order Match
|
RISB1878 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.04% |
15.3
|
Comamonas testosteroni
Species-level Match
Host Order Match
|
RISB1875 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.02% |
15.3
|
Lactiplantibacillus plantarum
Species-level Match
Host Order Match
|
RISB0608 |
Drosophila melanogaster
Order: Diptera
|
None
|
0.01% |
15.0
|
Wolbachia
Host Order Match
|
RISB0766 |
Aedes fluviatilis
Order: Diptera
|
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
|
0.01% |
15.0
|
Bacillus
Host Order Match
|
RISB1866 |
Drosophila melanogaster
Order: Diptera
|
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
|
0.01% |
15.0
|
Buchnera aphidicola
Species-level Match
Host Order Match
|
RISB0051 |
Episyrphus balteatus
Order: Diptera
|
None
|
0.00% |
15.0
|
Pectobacterium carotovorum
Species-level Match
Host Order Match
|
RISB1772 |
Muscidae
Order: Diptera
|
None
|
0.00% |
15.0
|
Candidatus Cardinium
Host Order Match
|
RISB1439 |
Lutzomyia evansi
Order: Diptera
|
‘Candidatus Cardinium’ is a recently described bacterium from the Bacteroidetes group involved in diverse reproduction alterations of its arthropod hosts (including cytoplasmic incompatibility, parthenogenesis, and feminization) similar to Wolbachia
|
0.00% |
15.0
|
Wolbachia
Host Order Match
|
RISB0779 |
Drosophila melanogaster
Order: Diptera
|
Wolbachia infection affects differential gene expression in Drosophila testis.Genes involved in carbohydrate metabolism, lysosomal degradation, proteolysis, lipid metabolism, and immune response were upregulated in the presence of Wolbachia
|
0.01% |
14.8
|
Wolbachia
Host Order Match
|
RISB1408 |
Anastrepha fraterculus
Order: Diptera
|
Wolbachia is the only known reproductive symbiont present in these morphotypes. Wolbachia reduced the ability for embryonic development in crosses involving cured females and infected males within each morphotype (uni-directional CI).
|
0.01% |
14.7
|
Ignatzschineria
Host Order Match
|
RISB0562 |
Chrysomya megacephala
Order: Diptera
|
Ignatzschineria indica is a Gram-negative bacterium commonly associated with maggot infestation and myiasis, a probable marker for myiasis diagnosis
|
0.81% |
13.8
|
Bacillus
Host Order Match
|
RISB0774 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.01% |
13.3
|
Shewanella
Host Order Match
|
RISB1924 |
Anopheles gambiae
Order: Diptera
|
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
|
0.72% |
13.3
|
Sphingobacterium
Host Order Match
|
RISB1226 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.00% |
12.7
|
Bacillus
Host Order Match
|
RISB0185 |
Drosophila melanogaster
Order: Diptera
|
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
|
0.01% |
12.3
|
Arsenophonus
Host Order Match
|
RISB1141 |
Hermetia illucens
Order: Diptera
|
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
|
0.00% |
11.8
|
Sphingobacterium
Host Order Match
|
RISB1400 |
Delia antiqua
Order: Diptera
|
suppressed Beauveria bassiana conidia germination and hyphal growth
|
0.00% |
11.3
|
Arsenophonus
Host Order Match
|
RISB1173 |
Melophagus ovinus
Order: Diptera
|
participation of symbionts on blood-digestion
|
0.00% |
10.9
|
Cedecea
Host Order Match
|
RISB1570 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
0.01% |
10.7
|
Alcaligenes
Host Order Match
|
RISB1871 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.35% |
10.6
|
Vagococcus
Host Order Match
|
RISB0042 |
Aldrichina grahami
Order: Diptera
|
None
|
0.49% |
10.5
|
Achromobacter
Host Order Match
|
RISB1869 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.00% |
10.3
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
0.95% |
10.3
|
Pantoea agglomerans
Species-level Match
|
RISB2197 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.01% |
10.0
|
Buchnera aphidicola
Species-level Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
0.00% |
10.0
|
Arsenophonus
Host Order Match
|
RISB1853 |
Lipoptena cervi
Order: Diptera
|
None
|
0.00% |
10.0
|
Staphylococcus gallinarum
Species-level Match
|
RISB0945 |
Callosobruchus maculatus
Order: Coleoptera
|
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
|
0.00% |
10.0
|
Variovorax
Host Order Match
|
RISB1712 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.00% |
10.0
|
Buchnera aphidicola
Species-level Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
0.00% |
9.8
|
Vibrio
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
8.23% |
9.6
|
Pantoea ananatis
Species-level Match
|
RISB1671 |
Spodoptera frugiperda
Order: Lepidoptera
|
modulate plant defense, downregulated the activity of the plant defensive proteins polyphenol oxidase and trypsin proteinase inhibitors (trypsin PI) but upregulated peroxidase (POX) activity in tomatoresponses
|
0.00% |
9.2
|
Mammaliicoccus sciuri
Species-level Match
|
RISB0075 |
Bombyx mori
Order: Lepidoptera
|
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
|
0.01% |
9.0
|
Staphylococcus xylosus
Species-level Match
|
RISB2497 |
Anticarsia gemmatalis
Order: Lepidoptera
|
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
|
0.00% |
9.0
|
Streptomyces sp. NBC_01324
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.01% |
9.0
|
Streptomyces sp. SJL17-4
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.00% |
9.0
|
Streptomyces sp. NBC_01324
Species-level Match
|
RISB2334 |
Sirex noctilio
Order: Hymenoptera
|
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
|
0.01% |
8.7
|
Escherichia coli
Species-level Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
0.95% |
8.7
|
Proteus vulgaris
Species-level Match
|
RISB0001 |
Leptinotarsa decemlineata
Order: Coleoptera
|
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
|
0.36% |
8.1
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1693 |
Plutella xylostella
Order: Lepidoptera
|
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
|
0.01% |
7.5
|
Staphylococcus gallinarum
Species-level Match
|
RISB0946 |
Callosobruchus maculatus
Order: Coleoptera
|
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine
|
0.00% |
7.4
|
Leclercia adecarboxylata
Species-level Match
|
RISB1757 |
Spodoptera frugiperda
Order: Lepidoptera
|
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
|
0.04% |
6.9
|
Corynebacterium variabile
Species-level Match
|
RISB0363 |
Pagiophloeus tsushimanus
Order: Coleoptera
|
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
|
0.06% |
6.8
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1692 |
Plutella xylostella
Order: Lepidoptera
|
participate in the synthesis of host lacking amino acids histidine and threonine
|
0.01% |
6.6
|
Xenorhabdus bovienii
Species-level Match
|
RISB2270 |
Acyrthosiphon pisum
Order: Hemiptera
|
have the gene PIN1 encoding the protease inhibitor protein against aphids
|
0.00% |
6.5
|
Proteus vulgaris
Species-level Match
|
RISB2460 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
0.36% |
6.4
|
Glutamicibacter halophytocola
Species-level Match
|
RISB0606 |
Phthorimaea operculella
Order: Lepidoptera
|
could degrade the major toxic α-solanine and α-chaconine in potatoes
|
0.00% |
6.4
|
Leclercia adecarboxylata
Species-level Match
|
RISB1758 |
Spodoptera frugiperda
Order: Lepidoptera
|
may influence the metabolization of pesticides in insects
|
0.04% |
6.2
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1691 |
Plutella xylostella
Order: Lepidoptera
|
activity of cellulose and hemicellulose
|
0.01% |
5.8
|
Diaphorobacter aerolatus
Species-level Match
|
RISB1062 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.00% |
5.2
|
Yersinia massiliensis
Species-level Match
|
RISB0407 |
Anaphes nitens
Order: Hymenoptera
|
None
|
0.14% |
5.1
|
Salmonella enterica
Species-level Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
0.08% |
5.1
|
Pseudocitrobacter corydidari
Species-level Match
|
RISB0696 |
Corydidarum magnifica
Order: Blattodea
|
None
|
0.01% |
5.0
|
Candidatus Cardinium
|
RISB0223 |
Bemisia tabaci
Order: Hemiptera
|
Cardinium could inhibit the defense response of the host plant and decrease the detoxification metabolism ability of the host whitefly, decrease the expression of detoxification metabolism genes, especially the uridine 5'-diphospho-glucuronyltransferase and P450 genes,
|
0.00% |
5.0
|
Candidatus Erwinia haradaeae
Species-level Match
|
RISB1632 |
Lachninae
Order: Hemiptera
|
None
|
0.00% |
5.0
|
Trabulsiella
|
RISB2201 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.00% |
5.0
|
Bifidobacterium
|
RISB0174 |
Apis mellifera
Order: Hymenoptera
|
Bifidobacterium provides complementary demethylation service to promote Gilliamella growth on methylated homogalacturonan, an enriched polysaccharide of pectin. In exchange, Gilliamella shares digestive products with Bifidobacterium, through which a positive interaction is established
|
0.00% |
5.0
|
Clostridium
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.07% |
4.3
|
Weissella
|
RISB1982 |
Blattella germanica
Order: Blattodea
|
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
|
0.05% |
3.9
|
Xanthomonas
|
RISB0498 |
Xylocopa appendiculata
Order: Hymenoptera
|
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
|
0.00% |
3.8
|
Bifidobacterium
|
RISB0616 |
Spodoptera frugiperda
Order: Lepidoptera
|
Strain wkB204 grew in the presence of amygdalin as the sole carbon source, suggesting that this strain degrades amygdalin and is not susceptible to the potential byproducts
|
0.00% |
3.4
|
Sphingobacterium
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.00% |
3.3
|
Symbiopectobacterium
|
RISB1889 |
Pseudococcus longispinus
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.00% |
3.3
|
Yokenella
|
RISB1492 |
Nezara viridula
Order: Hemiptera
|
help stinkbugs to feed on soybean developing seeds in spite of its chemical defenses by degrading isoflavonoids and deactivate soybean protease inhibitors
|
0.00% |
3.1
|
Weissella
|
RISB0641 |
Formica
Order: Hymenoptera
|
exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew
|
0.05% |
2.8
|
Candidatus Cardinium
|
RISB2290 |
Sogatella furcifera
Order: Hemiptera
|
dual infection with Cardinium and Wolbachia induced strong cytoplasmic incompatibility (CI) in a single host
|
0.00% |
2.2
|
Delftia
|
RISB0083 |
Osmia cornifrons
Order: Hymenoptera
|
be known to exhibit antibiotic activity, suggesting their potential protective role against pathogens
|
0.01% |
2.0
|
Xanthomonas
|
RISB0217 |
Xylocopa appendiculata
Order: Hymenoptera
|
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
|
0.00% |
1.9
|
Kluyvera
|
RISB1064 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
1.61% |
1.8
|
Rhizobium
|
RISB0135 |
Coccinella septempunctata
Order: Coleoptera
|
be commonly found in plant roots and they all have nitrogen fixation abilities
|
0.01% |
1.6
|
Delftia
|
RISB0806 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-19 oxidation pathway
|
0.01% |
1.4
|
Kosakonia
|
RISB0810 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-16 oxidation pathway
|
0.01% |
1.4
|
Halomonas
|
RISB1808 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.01% |
1.3
|
Variovorax
|
RISB2153 |
Osmia bicornis
Order: Hymenoptera
|
may be essential to support Osmia larvae in their nutrient uptake
|
0.00% |
1.3
|
Delftia
|
RISB1754 |
Spodoptera frugiperda
Order: Lepidoptera
|
may influence the metabolization of pesticides in insects
|
0.01% |
1.2
|
Clostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.07% |
1.1
|
Dickeya
|
RISB1086 |
Rhodnius prolixus
Order: Hemiptera
|
supply enzymatic biosynthesis of B-complex vitamins
|
0.01% |
1.0
|
Cronobacter
|
RISB0247 |
Tenebrio molitor
Order: Coleoptera
|
may be indirectly involved in the digestion of PE
|
0.01% |
1.0
|
Brevibacterium
|
RISB0464 |
Acrida cinerea
Order: Orthoptera
|
correlated with the hemicellulose digestibility
|
0.00% |
0.9
|
Brevibacterium
|
RISB2359 |
Bombyx mori
Order: Lepidoptera
|
producing lipase in a gut environment
|
0.00% |
0.8
|
Trabulsiella
|
RISB1685 |
Melolontha hippocastani
Order: Coleoptera
|
Involved in cellulose degradation
|
0.00% |
0.7
|
Kosakonia
|
RISB1155 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.01% |
0.4
|
Flavobacterium
|
RISB0659 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.09% |
0.1
|
Clostridium
|
RISB1959 |
Pyrrhocoridae
Order: Hemiptera
|
None
|
0.07% |
0.1
|
Weissella
|
RISB1566 |
Liometopum apiculatum
Order: Hymenoptera
|
None
|
0.05% |
0.1
|
Cedecea
|
RISB0504 |
Plutella xylostella
Order: Lepidoptera
|
None
|
0.01% |
0.0
|
Halomonas
|
RISB1374 |
Bemisia tabaci
Order: Hemiptera
|
None
|
0.01% |
0.0
|
Achromobacter
|
RISB0383 |
Aphis gossypii
Order: Hemiptera
|
None
|
0.00% |
0.0
|
Bifidobacterium
|
RISB1944 |
Apis cerana
Order: Hymenoptera
|
None
|
0.00% |
0.0
|
Brevibacterium
|
RISB0897 |
Myzus persicae
Order: Hemiptera
|
None
|
0.00% |
0.0
|
Legionella
|
RISB1687 |
Polyplax serrata
Order: Phthiraptera
|
None
|
0.00% |
0.0
|
Neisseria
|
RISB0512 |
Plutella xylostella
Order: Lepidoptera
|
None
|
0.00% |
0.0
|
Weeksella
|
RISB1265 |
Rheumatobates bergrothi
Order: Hemiptera
|
None
|
0.00% |
0.0
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.