SRR24358075 - Aedes koreicus larvae

Basic Information

Run: SRR24358075

Assay Type: WGS

Bioproject: PRJNA952898

Biosample: SAMN34443356

Bytes: 2202295996

Center Name: GOETHE UNIVERSITY FRANKFURT AM MAIN/GERMANY

Sequencing Information

Instrument: Illumina NovaSeq 6000

Library Layout: PAIRED

Library Selection: RANDOM

Platform: ILLUMINA

Geographic Information

Country: Germany

Continent: Europe

Location Name: Germany: Wiesbaden

Latitude/Longitude: 50.104510 N 8.216475 E

Sample Information

Host: Aedes koreicus larvae

Isolation: -

Biosample Model: MIMS.me,MIGS/MIMS/MIMARKS.host-associated

Collection Date: 2020-07-21

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Listeria monocytogenes
RISB2308
Drosophila melanogaster
Order: Diptera
L. monocytogenes infection disrupts host energy metabolism by depleting energy stores (triglycerides and glycogen) and reducing metabolic pathway activity (beta-oxidation and glycolysis). The infection affects antioxidant defense by reducing uric acid levels and alters amino acid metabolism. These metabolic changes are accompanied by melanization, potentially linked to decreased tyrosine levels.
0.01%
20.0
Serratia marcescens
RISB1291
Aedes aegypti
Order: Diptera
facilitates arboviral infection through a secreted protein named SmEnhancin, which digests membrane-bound mucins on the mosquito gut epithelia, thereby enhancing viral dissemination.
0.04%
18.7
Arthrobacter sp. NEB 688
RISB0769
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.30%
18.6
Arthrobacter sp. FB24
RISB0769
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.02%
18.3
Morganella morganii
RISB0772
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.02%
18.3
Arthrobacter sp. PM3
RISB0769
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.01%
18.3
Paenibacillus sp. FSL H8-0332
RISB0774
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.03%
18.3
Paenibacillus sp. RUD330
RISB0774
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.01%
18.3
Leucobacter aridicollis
RISB0771
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.01%
18.3
Stenotrophomonas maltophilia
RISB1227
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.46%
18.2
Bacillus sp. 7D3
RISB0791
Anopheles barbirostris
Order: Diptera
without this midgut flora showed delayed development to become adult
1.77%
18.1
Morganella morganii
RISB0008
Phormia regina
Order: Diptera
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.02%
18.0
Serratia marcescens
RISB0009
Phormia regina
Order: Diptera
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.04%
17.7
Pseudomonas protegens
RISB1224
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.01%
17.7
Chromobacterium sp. ATCC 53434
RISB1453
Aedes aegypti
Order: Diptera
aminopeptidase secreted by a Chromobacterium species suppresses DENV infection by directly degrading the DENV envelope protein
0.01%
17.5
Comamonas terrigena
RISB2021
Bactrocera dorsalis
Order: Diptera
This group in the immature stages may be helping the insects to cope with oxidative stress by supplementing available oxygen.
0.02%
17.5
Psychrobacter sp. 28M-43
RISB1773
Calliphoridae
Order: Diptera
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
0.01%
17.5
Stenotrophomonas maltophilia
RISB1141
Hermetia illucens
Order: Diptera
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
0.46%
17.3
Stenotrophomonas maltophilia
RISB1401
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
0.46%
16.8
Morganella morganii
RISB0611
Bactrocera dorsalis
Order: Diptera
may hydrolysing nitrogenous waste and providing metabolizable nitrogen for B. dorsalis
0.02%
16.7
Pantoea dispersa
RISB1413
Bactrocera dorsalis
Order: Diptera
causing female Bactrocera dorsalis laid more eggs but had shorter lifespan
0.01%
16.5
Pseudomonas protegens
RISB1398
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
0.01%
16.4
Microbacterium sp. zg-B185
RISB2095
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.60%
16.2
Serratia marcescens
RISB0096
Bactrocera minax
Order: Diptera
egrade phenols in unripe citrus in B. minax larvae
0.04%
16.0
Providencia rettgeri
RISB1001
Anastrepha obliqua
Order: Diptera
improve the sexual competitiveness of males
0.05%
15.9
Microbacterium sp. AZCO
RISB2095
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.27%
15.8
Microbacterium sp. 4R-513
RISB2095
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.26%
15.8
Bacillus thuringiensis
RISB0820
Simulium tani
Order: Diptera
show resistance to some antibiotics
0.05%
15.8
Providencia sp. PROV252
RISB1574
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.01%
15.7
Aeromonas sp. CA23
RISB2086
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.06%
15.6
Providencia rettgeri
RISB1169
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
0.05%
15.6
Paenibacillus sp. FSL H8-0332
RISB2098
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.03%
15.6
Chryseobacterium sp. 3008163
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.02%
15.6
Comamonas testosteroni
RISB1875
Aedes aegypti
Order: Diptera
gut microbiome
0.05%
15.3
Bacillus cereus
RISB1872
Aedes aegypti
Order: Diptera
gut microbiome
0.04%
15.3
Pseudomonas protegens
RISB1878
Aedes aegypti
Order: Diptera
gut microbiome
0.01%
15.3
Klebsiella pneumoniae
RISB1771
Muscidae
Order: Diptera
None
0.27%
15.3
Wolbachia
RISB0766
Aedes fluviatilis
Order: Diptera
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
0.27%
15.3
Escherichia coli
RISB1769
Calliphoridae
Order: Diptera
None
0.21%
15.2
Thauera sp. K11
RISB1711
Phlebotomus papatasi
Order: Diptera
None
0.14%
15.1
Wolbachia
RISB0779
Drosophila melanogaster
Order: Diptera
Wolbachia infection affects differential gene expression in Drosophila testis.Genes involved in carbohydrate metabolism, lysosomal degradation, proteolysis, lipid metabolism, and immune response were upregulated in the presence of Wolbachia
0.27%
15.1
Bosea sp. (in: a-proteobacteria)
RISB1702
Phlebotomus papatasi
Order: Diptera
None
0.06%
15.1
Variovorax sp. HW608
RISB1712
Phlebotomus papatasi
Order: Diptera
None
0.06%
15.1
Variovorax sp. PBS-H4
RISB1712
Phlebotomus papatasi
Order: Diptera
None
0.05%
15.1
Bosea sp. RAC05
RISB1702
Phlebotomus papatasi
Order: Diptera
None
0.04%
15.0
Variovorax sp. RA8
RISB1712
Phlebotomus papatasi
Order: Diptera
None
0.04%
15.0
Bosea sp. PAMC 26642
RISB1702
Phlebotomus papatasi
Order: Diptera
None
0.03%
15.0
Buchnera aphidicola
RISB0051
Episyrphus balteatus
Order: Diptera
None
0.03%
15.0
Lactococcus
RISB0131
Ceratitis capitata
Order: Diptera
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The  colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
0.03%
15.0
Thauera sp. WB-2
RISB1711
Phlebotomus papatasi
Order: Diptera
None
0.02%
15.0
Thauera sp. JM12B12
RISB1711
Phlebotomus papatasi
Order: Diptera
None
0.01%
15.0
Brevundimonas sp. NIBR10
RISB1703
Phlebotomus papatasi
Order: Diptera
None
0.01%
15.0
Acetobacter
RISB1865
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.01%
15.0
Brevundimonas sp. NIBR11
RISB1703
Phlebotomus papatasi
Order: Diptera
None
0.00%
15.0
Wolbachia
RISB1408
Anastrepha fraterculus
Order: Diptera
Wolbachia is the only known reproductive symbiont present in these morphotypes. Wolbachia reduced the ability for embryonic development in crosses involving cured females and infected males within each morphotype (uni-directional CI).
0.27%
15.0
Citrobacter
RISB1503
Bactrocera dorsalis
Order: Diptera
Pesticide-degrading bacteria were frequently detected from pesticide-resistant insects. Susceptible insects became resistant after inoculation of the pesticide-degrading symbiont
0.09%
13.7
Acetobacter
RISB0961
Drosophila melanogaster
Order: Diptera
The exist of Acetobacter had a balancing effect on food ingestion when carbohydrate levels were high in the warmer months, stabilizing fitness components of flies across the year.
0.01%
13.6
Citrobacter
RISB0192
Hermetia illucens
Order: Diptera
can directly promote the expression of two gene families related to intestinal protein metabolism: Hitryp serine protease trypsin family and Himtp metallopeptidase family
0.09%
13.5
Acinetobacter
RISB0768
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.03%
13.3
Acinetobacter
RISB0421
Anopheles sinensis
Order: Diptera
Acinetobacter species increase the resistance of An. gambiae to Plasmodium development partly by the induction of anti-Plasmodium factors in Imd pathway
0.03%
13.1
Lactococcus
RISB0113
Bactrocera dorsalis
Order: Diptera
increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities
0.03%
13.0
Citrobacter
RISB1221
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.09%
12.8
Azospira
RISB1918
Anopheles gambiae
Order: Diptera
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
0.05%
12.6
Acetobacter
RISB0184
Drosophila melanogaster
Order: Diptera
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
0.01%
12.3
Actinomyces
RISB1234
Hermetia illucens
Order: Diptera
provides the tools for degrading of a broad range of substrates
0.19%
11.5
Komagataeibacter
RISB1883
Drosophila suzukii
Order: Diptera
produce volatile substances that attract female D. suzukii
0.01%
11.2
Cedecea
RISB1570
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.01%
10.7
Achromobacter
RISB1869
Aedes aegypti
Order: Diptera
gut microbiome
0.33%
10.6
Lactococcus
RISB1167
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
0.03%
10.6
Acinetobacter
RISB2083
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.03%
10.6
Sphingobium
RISB1880
Aedes aegypti
Order: Diptera
gut microbiome
0.17%
10.5
Alcaligenes
RISB1871
Aedes aegypti
Order: Diptera
gut microbiome
0.01%
10.3
Klebsiella pneumoniae
RISB2185
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.27%
10.3
Propionibacterium
RISB0490
Ceratitis capitata
Order: Diptera
None
0.07%
10.1
Burkholderia gladioli
RISB1172
Lagria villosa
Order: Coleoptera
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
0.05%
10.1
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
0.03%
10.0
Cellulosimicrobium sp. ES-005
RISB2182
Armadillidae
Order: Isopoda
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.02%
10.0
Pantoea agglomerans
RISB2197
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.01%
10.0
Bifidobacterium asteroides
RISB0174
Apis mellifera
Order: Hymenoptera
Bifidobacterium provides complementary demethylation service to promote Gilliamella growth on methylated homogalacturonan, an enriched polysaccharide of pectin. In exchange, Gilliamella shares digestive products with Bifidobacterium, through which a positive interaction is established
0.01%
10.0
Deinococcus sp. AB2017081
RISB1649
Camponotus japonicus
Order: Hymenoptera
Four new aminoglycolipids, deinococcucins A–D, were discovered from a Deinococcus sp. strain isolated from the gut of queen carpenter ants, Camponotus japonicus, showed functional ability of inducing the quinone reductase production in host cells
0.01%
9.9
Deinococcus sp. KNUC1210
RISB1649
Camponotus japonicus
Order: Hymenoptera
Four new aminoglycolipids, deinococcucins A–D, were discovered from a Deinococcus sp. strain isolated from the gut of queen carpenter ants, Camponotus japonicus, showed functional ability of inducing the quinone reductase production in host cells
0.00%
9.9
Streptomyces sp. WAC00303
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.85%
9.8
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
0.03%
9.8
Streptomyces sp. WAC00303
RISB2334
Sirex noctilio
Order: Hymenoptera
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
0.85%
9.6
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
0.21%
9.5
Burkholderia gladioli
RISB1729
Lagria hirta
Order: Coleoptera
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
0.05%
9.4
Clostridium sp. JN-1
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.03%
9.3
Streptomyces sp. T12
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.24%
9.2
Pantoea ananatis
RISB1671
Spodoptera frugiperda
Order: Lepidoptera
modulate plant defense, downregulated the activity of the plant defensive proteins polyphenol oxidase and trypsin proteinase inhibitors (trypsin PI) but upregulated peroxidase (POX) activity in tomatoresponses
0.01%
9.2
Mammaliicoccus sciuri
RISB0075
Bombyx mori
Order: Lepidoptera
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
0.01%
9.0
Staphylococcus xylosus
RISB2497
Anticarsia gemmatalis
Order: Lepidoptera
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
0.01%
9.0
Burkholderia gladioli
RISB1604
Lagria villosa
Order: Coleoptera
Bacteria produce icosalide, an unusual two-tailed lipocyclopeptide antibiotic,which is active against entomopathogenic bacteria, thus adding to the chemical armory protecting beetle offspring
0.05%
8.9
Xanthomonas sp. AM6
RISB0498
Xylocopa appendiculata
Order: Hymenoptera
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
0.01%
8.8
Bifidobacterium asteroides
RISB0616
Spodoptera frugiperda
Order: Lepidoptera
Strain wkB204 grew in the presence of amygdalin as the sole carbon source, suggesting that this strain degrades amygdalin and is not susceptible to the potential byproducts
0.01%
8.5
Blattabacterium cuenoti
RISB0133
Panesthiinae
Order: Blattodea
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
0.01%
8.0
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.21%
7.9
Caballeronia insecticola
RISB0276
Riptortus pedestris
Order: Hemiptera
Gut symbiont resulted in increase in the body size and weight of male adults;increased dispersal capacity of male adults especially for flight
0.01%
7.9
Proteus vulgaris
RISB0001
Leptinotarsa decemlineata
Order: Coleoptera
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
0.02%
7.7
Xanthomonas sp. AM6
RISB0217
Xylocopa appendiculata
Order: Hymenoptera
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
0.01%
7.0
Micrococcus sp. 2A
RISB2276
Ostrinia nubilalis
Order: Lepidoptera
extreme cellulolytic enzymes, at extreme (pH 12) conditions, exhibited cellulolytic properties
0.02%
6.9
Leclercia adecarboxylata
RISB1757
Spodoptera frugiperda
Order: Lepidoptera
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
0.02%
6.8
Corynebacterium variabile
RISB0363
Pagiophloeus tsushimanus
Order: Coleoptera
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
0.01%
6.8
Staphylococcus xylosus
RISB2247
Anticarsia gemmatalis
Order: Lepidoptera
mitigation of the negative effects of proteinase inhibitors produced by the host plant
0.01%
6.7
Sphingomonas sp. MM-1
RISB0134
Spodoptera frugiperda
Order: Lepidoptera
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
0.03%
6.7
Sphingomonas sp. FARSPH
RISB0134
Spodoptera frugiperda
Order: Lepidoptera
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
0.02%
6.7
Sphingomonas sp. CL5.1
RISB0134
Spodoptera frugiperda
Order: Lepidoptera
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
0.01%
6.7
Glutamicibacter halophytocola
RISB0606
Phthorimaea operculella
Order: Lepidoptera
could degrade the major toxic α-solanine and α-chaconine in potatoes
0.01%
6.4
Klebsiella pneumoniae
RISB2459
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
0.27%
6.3
Leclercia adecarboxylata
RISB1758
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.02%
6.2
Staphylococcus xylosus
RISB2246
Anticarsia gemmatalis
Order: Lepidoptera
Against plant-derived protease inhibitor; pest control
0.01%
6.1
Proteus vulgaris
RISB2460
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
0.02%
6.0
Aeromonas sp. CA23
RISB2456
Bombyx mori
Order: Lepidoptera
able to utilize the CMcellulose and xylan
0.06%
5.9
Methylobacterium sp. FF17
RISB2053
Atractomorpha sinensis
Order: Orthoptera
associated with cellulolytic enzymes
0.02%
5.7
Methylobacterium sp. AMS5
RISB2053
Atractomorpha sinensis
Order: Orthoptera
associated with cellulolytic enzymes
0.01%
5.7
Blattabacterium cuenoti
RISB0518
Cryptocercus punctulatus
Order: Blattodea
collaborative arginine biosynthesis
0.01%
5.7
Blattabacterium cuenoti
RISB0093
Blattella germanica
Order: Blattodea
obligate endosymbiont
0.01%
5.4
Rhodococcus ruber
RISB1157
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.07%
5.4
Aeromonas sp. CA23
RISB1145
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.06%
5.4
Diaphorobacter aerolatus
RISB1062
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.03%
5.3
Rhodobacter
RISB0138
Coccinella septempunctata
Order: Coleoptera
Rhodanobacter genera can utilize various carbon sources, including cellobiose. In larvae of longhorned beetles that feed on plants rich in carbohydrates (cellulose and hemicellulose) and lignin, Rhodanobacter can help the larvae digest more carbon nutrients through carbon sequestration
0.14%
5.1
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
0.11%
5.1
Cupriavidus pauculus
RISB0694
Alydus tomentosus
Order: Hemiptera
None
0.07%
5.1
Agrobacterium tumefaciens
RISB0650
Melanaphis bambusae
Order: Hemiptera
None
0.05%
5.1
Flavobacterium johnsoniae
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
0.04%
5.0
Caballeronia zhejiangensis
RISB0688
Anasa tristis
Order: Hemiptera
None
0.02%
5.0
Micromonospora harpali
RISB2034
Harpalus sinicus
Order: Coleoptera
None
0.02%
5.0
Gilliamella
RISB0102
Apis mellifera
Order: Hymenoptera
Gilliamella apicola carries the gene for the desaturase FADS2, which is able to metabolize polyunsaturated fatty acids from pollen and synthesize endocannabinoid, a lipogenic neuroactive substance, thereby modulating reward learning and memory in honeybees.
0.02%
5.0
Methylovirgula
RISB0137
Coccinella septempunctata
Order: Coleoptera
Methylovirgula is ubiquitous in soil and has been found in many soil samples as a major species producing carbon activity, scholars have found that the microorganism has the highest content in mixed peat swamp forest systems and has the effect of harnessing and reducing methane
0.02%
5.0
Caballeronia grimmiae
RISB0689
Leptoglossus zonatus
Order: Hemiptera
None
0.01%
5.0
Candidatus Fukatsuia symbiotica
RISB1630
Lachninae
Order: Hemiptera
None
0.01%
5.0
Candidatus Erwinia haradaeae
RISB1632
Lachninae
Order: Hemiptera
None
0.01%
5.0
Candidatus Regiella
RISB1370
Sitobion avenae
Order: Hemiptera
Regiella infection decreased the intrinsic rate of increase (rm) of aphids at 25 °C and 28 °C. However, at 31 °C, the effect of Regiella on the rm varied depending on the aphid genotype and density. Thus, the negative effects of this endosymbiont on its host were environmentally dependent.
0.01%
5.0
Ereboglobus luteus
RISB1523
Shelfordella lateralis
Order: Blattodea
None
0.00%
5.0
Candidatus Regiella
RISB1819
Sitobion avenae
Order: Hemiptera
In R. insecticola-infected aphid lines, there were increases in plasticities for developmental times of first and second instar nymphs and for fecundity, showing novel functional roles of bacterial symbionts in plant-insect interactions.
0.01%
4.8
Gordonibacter
RISB2303
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.03%
4.3
Candidatus Regiella
RISB1363
Sitobion avenae
Order: Hemiptera
R. insecticola-infected aphids were more predated by the ladybird Hippodamia variegata irrespective of host plants and did not improve defences against coccinellid predators or metabolic rates on any host plants
0.01%
4.2
Amycolatopsis
RISB0483
Trachymyrmex smithi
Order: Hymenoptera
inhibited the growth of Pseudonocardia symbionts under laboratory conditions. The novel analog nocamycin V from the strain was identified as the antibacterial compound
0.88%
4.2
Rickettsiella
RISB2479
Acyrthosiphon pisum
Order: Hemiptera
changes the insects’ body color from red to green in natural populations, the infection increased amounts of blue-green polycyclic quinones, whereas it had less of an effect on yellow-red carotenoid pigments
0.08%
4.2
Sphingobium
RISB1837
Dendroctonus valens
Order: Coleoptera
It can trongly degrade naringenin, and pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and facilitate naringenin biodegradation by the microbiotas.
0.17%
4.2
Novosphingobium
RISB1837
Dendroctonus valens
Order: Coleoptera
It can trongly degrade naringenin, and pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and facilitate naringenin biodegradation by the microbiotas.
0.14%
4.2
Gordonibacter
RISB2126
Dysdercus fasciatus
Order: Hemiptera
Elimination of symbionts by egg-surface sterilization resulted in significantly higher mortality and reduced growth rates, indicating that the microbial community plays an important role for host nutrition
0.03%
4.1
Amycolatopsis
RISB0199
Trachymyrmex
Order: Hymenoptera
produce antibiotic EC0-0501 that has strong activity against ant-associated Actinobacteria and may also play a role in bacterial competition in this niche
0.88%
4.0
Nocardioides
RISB1914
Hyles euphorbiae
Order: Lepidoptera
able to degrade alkaloids and/or latex
2.85%
3.6
Rickettsiella
RISB2262
Acyrthosiphon pisum
Order: Hemiptera
against this entomopathogen Pandora neoaphidis, reduce mortality and also decrease fungal sporulation on dead aphids which may help protect nearby genetically identical insects
0.08%
3.6
Nocardia
RISB0947
Acromyrmex
Order: Hymenoptera
Pseudonocardia in the Acromyrmex leaf-cutter ants as a protective partner against the entomopathogenic fungus Metarhizium
0.67%
3.1
Tsukamurella
RISB1531
Hoplothrips carpathicus
Order: Thysanoptera
This genus was identified as dominant in intensively feeding second-stage larvae and suggests a mechanism by which L2 larvae might process cellulose.
0.09%
3.1
Rickettsiella
RISB1739
Acyrthosiphon pisum
Order: Hemiptera
in an experiment with a single-injected isolate of Rickettsiella sp. wasps were also attracted to plants fed on by aphids without secondary symbionts
0.08%
3.1
Pseudonocardia
RISB0947
Acromyrmex
Order: Hymenoptera
Pseudonocardia in the Acromyrmex leaf-cutter ants as a protective partner against the entomopathogenic fungus Metarhizium
0.39%
2.8
Nocardia
RISB1218
Mycocepurus smithii
Order: Hymenoptera
produce secondary metabolites with antibiotic activity that protects the fungus garden against pathogens
0.67%
2.8
Bradyrhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
1.11%
2.7
Bartonella
RISB1673
Apis mellifera
Order: Hymenoptera
a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream
0.01%
2.6
Pseudonocardia
RISB1218
Mycocepurus smithii
Order: Hymenoptera
produce secondary metabolites with antibiotic activity that protects the fungus garden against pathogens
0.39%
2.5
Yersinia
RISB0492
Cimex hemipterus
Order: Hemiptera
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
0.02%
2.4
Mycobacterium
RISB1156
Nicrophorus concolor
Order: Coleoptera
produces Antimicrobial compounds
1.69%
2.3
Bacteroides
RISB0256
Leptocybe invasa
Order: Hymenoptera
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
0.03%
2.3
Bacteroides
RISB0090
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.03%
2.2
Delftia
RISB0083
Osmia cornifrons
Order: Hymenoptera
be known to exhibit antibiotic activity, suggesting their potential protective role against pathogens
0.12%
2.1
Bacteroides
RISB1183
Oryzaephilus surinamensis
Order: Coleoptera
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
0.03%
2.1
Rhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
0.32%
1.9
Massilia
RISB2151
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.31%
1.6
Halomonas
RISB1808
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.27%
1.6
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.24%
1.6
Delftia
RISB0806
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-19 oxidation pathway
0.12%
1.5
Nostoc
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.03%
1.5
Duganella
RISB2152
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.03%
1.3
Delftia
RISB1754
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.12%
1.3
Gordonia
RISB1912
Hyles euphorbiae
Order: Lepidoptera
able to degrade alkaloids and/or latex
0.42%
1.2
Curtobacterium
RISB1910
Hyles euphorbiae
Order: Lepidoptera
able to degrade alkaloids and/or latex
0.38%
1.1
Brevibacterium
RISB0464
Acrida cinerea
Order: Orthoptera
correlated with the hemicellulose digestibility
0.20%
1.1
Clavibacter
RISB0465
Trilophidia annulata
Order: Orthoptera
correlated with the hemicellulose digestibility
0.13%
1.1
Brevibacterium
RISB2359
Bombyx mori
Order: Lepidoptera
producing lipase in a gut environment
0.20%
1.0
Paraburkholderia
RISB0125
Physopelta gutta
Order: Hemiptera
None
0.42%
0.4
Curtobacterium
RISB0900
Myzus persicae
Order: Hemiptera
None
0.38%
0.4
Gilliamella
RISB0620
Spodoptera frugiperda
Order: Lepidoptera
degrade amygdalin
0.02%
0.4
Priestia
RISB0839
Helicoverpa armigera
Order: Lepidoptera
producing amylase
0.01%
0.4
Achromobacter
RISB0383
Aphis gossypii
Order: Hemiptera
None
0.33%
0.3
Halomonas
RISB1374
Bemisia tabaci
Order: Hemiptera
None
0.27%
0.3
Brevibacterium
RISB0897
Myzus persicae
Order: Hemiptera
None
0.20%
0.2
Ralstonia
RISB0243
Spodoptera frugiperda
Order: Lepidoptera
None
0.20%
0.2
Methylorubrum
RISB0903
Myzus persicae
Order: Hemiptera
None
0.07%
0.1
Gordonibacter
RISB1960
Pyrrhocoridae
Order: Hemiptera
None
0.03%
0.0
Gilliamella
RISB1945
Apis cerana
Order: Hymenoptera
None
0.02%
0.0
Yersinia
RISB0407
Anaphes nitens
Order: Hymenoptera
None
0.02%
0.0
Kaistia
RISB0829
Spodoptera frugiperda
Order: Lepidoptera
None
0.02%
0.0
Cedecea
RISB0504
Plutella xylostella
Order: Lepidoptera
None
0.01%
0.0
Selenomonas
RISB1305
Aphis gossypii
Order: Hemiptera
None
0.01%
0.0
Legionella
RISB1687
Polyplax serrata
Order: Phthiraptera
None
0.01%
0.0
Tistrella
RISB0270
Recilia dorsalis
Order: Hemiptera
None
0.01%
0.0
Neisseria
RISB0512
Plutella xylostella
Order: Lepidoptera
None
0.01%
0.0
Acidobacterium
RISB1136
Coptotermes
Order: Blattodea
None
0.00%
0.0

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR24358075
2.1 GB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table