SRR24296968 - Eumaeus atala
Basic Information
Run: SRR24296968
Assay Type: WGS
Bioproject: PRJNA961367
Biosample: SAMN34359488
Bytes: 602135563
Center Name: LANGEBIO
Sequencing Information
Instrument: NextSeq 550
Library Layout: PAIRED
Library Selection: RANDOM
Platform: ILLUMINA
Geographic Information
Country: USA
Continent: North America
Location Name: USA: Florida
Latitude/Longitude: not collected
Sample Information
Host: Eumaeus atala
Isolation: -
Biosample Model: Metagenome or environmental
Collection Date: 2017-02-15
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Pantoea sp. SS70
Species-level Match
Host Order Match
Host Species Match
|
RISB0300 |
Eumaeus atala
Order: Lepidoptera
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores
|
0.53% |
40.5
|
Pantoea sp. SOD02
Species-level Match
Host Order Match
Host Species Match
|
RISB0300 |
Eumaeus atala
Order: Lepidoptera
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores
|
0.46% |
40.5
|
Pantoea sp. BRR-3P
Species-level Match
Host Order Match
Host Species Match
|
RISB0300 |
Eumaeus atala
Order: Lepidoptera
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores
|
0.39% |
40.4
|
Enterobacter mori
Species-level Match
|
RISB1163 |
Bactrocera dorsalis
Order: Diptera
|
Promote the growth of larvae
|
16.57% |
22.1
|
Klebsiella pneumoniae
Species-level Match
Host Order Match
|
RISB2185 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.12% |
20.1
|
Serratia marcescens
Species-level Match
Host Order Match
|
RISB2200 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.05% |
20.1
|
Microbacterium oleivorans
Species-level Match
Host Order Match
|
RISB2194 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.00% |
20.0
|
Serratia marcescens
Species-level Match
Host Order Match
|
RISB0477 |
Spodoptera litura
Order: Lepidoptera
|
The ingestion of bacteria negatively affected the development and nutritional physiology of insect. The bacteria after successful establishment started degrading the gut wall and invaded the haemocoel thereby causing the death of the host.
|
0.05% |
19.8
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
0.11% |
19.4
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1122 |
Bombyx mori
Order: Lepidoptera
|
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
|
0.01% |
19.0
|
Serratia marcescens
Species-level Match
Host Order Match
|
RISB1426 |
Maculinea alcon
Order: Lepidoptera
|
been associated with growth-promoting activity, is capable of producing volatile pyrazines, including 2,5-dimethylpyrazine and 3-ethyl-2,5-dimethylpyrazine, which are used as pheromones by ants
|
0.05% |
18.9
|
Klebsiella oxytoca
Species-level Match
Host Order Match
|
RISB2565 |
Acrolepiopsis assectella
Order: Lepidoptera
|
Klebsiella oxytoca and Bacillus spp. produce the volatile alkyl disulfides present in the fecal pellets, which serve as kairomones to attract the parasitoid Diadromus pulchellus to the moth host
|
0.02% |
18.9
|
Enterobacter ludwigii
Species-level Match
Host Order Match
|
RISB1543 |
Helicoverpa zea
Order: Lepidoptera
|
two immunity-related genes glucose oxidase (GOX) and lysozyme (LYZ) were more highly expressed in both salivary glands and midguts compared with MgCl2 solution-treated caterpillars
|
0.13% |
18.7
|
Enterobacter sp. JBIWA008
Species-level Match
Host Order Match
|
RISB1392 |
Spodoptera frugiperda
Order: Lepidoptera
|
microbe-mediated assaults by maize defenses on the fall armyworm on the insect digestive and immune system reduced growth and elevated mortality in these insects
|
0.04% |
18.3
|
Klebsiella oxytoca
Species-level Match
Host Order Match
|
RISB1508 |
Walshia miscecolorella
Order: Lepidoptera
|
Antibiotic-treated larvae suffered growth retardation on a diet containing plant extract or swainsonine. Gut bacteria showed toxin-degradation activities in vitro
|
0.02% |
18.3
|
Enterococcus sp. FDAARGOS_375
Species-level Match
Host Order Match
|
RISB1393 |
Spodoptera frugiperda
Order: Lepidoptera
|
microbe-mediated assaults by maize defenses on the fall armyworm on the insect digestive and immune system reduced growth and elevated mortality in these insects
|
0.01% |
18.2
|
Acinetobacter sp. Tol 5
Species-level Match
Host Order Match
|
RISB1500 |
Lymantria dispar
Order: Lepidoptera
|
Bacteria isolated from a host plant had a glycoside-degrading activity, which enhanced growth of the moth when larvae were fed on a toxin-containing diet
|
0.06% |
18.1
|
Acinetobacter sp. C32I
Species-level Match
Host Order Match
|
RISB1500 |
Lymantria dispar
Order: Lepidoptera
|
Bacteria isolated from a host plant had a glycoside-degrading activity, which enhanced growth of the moth when larvae were fed on a toxin-containing diet
|
0.01% |
18.1
|
Acinetobacter sp. Z1
Species-level Match
Host Order Match
|
RISB1500 |
Lymantria dispar
Order: Lepidoptera
|
Bacteria isolated from a host plant had a glycoside-degrading activity, which enhanced growth of the moth when larvae were fed on a toxin-containing diet
|
0.00% |
18.1
|
Leclercia adecarboxylata
Species-level Match
Host Order Match
|
RISB1757 |
Spodoptera frugiperda
Order: Lepidoptera
|
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
|
0.05% |
16.9
|
Microbacterium arborescens
Species-level Match
Host Order Match
|
RISB1759 |
Spodoptera frugiperda
Order: Lepidoptera
|
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
|
0.00% |
16.8
|
Enterococcus sp. FDAARGOS_375
Species-level Match
Host Order Match
|
RISB1541 |
Plutella xylostella
Order: Lepidoptera
|
enhanced resistance to the widely used insecticide, chlorpyrifos, in P. xylostella
|
0.01% |
16.7
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1123 |
Bombyx mori
Order: Lepidoptera
|
confer a significant fitness advantage via nutritional (amino acids) upgrading
|
0.01% |
16.6
|
Leclercia adecarboxylata
Species-level Match
Host Order Match
|
RISB1758 |
Spodoptera frugiperda
Order: Lepidoptera
|
may influence the metabolization of pesticides in insects
|
0.05% |
16.2
|
Enterococcus casseliflavus
Species-level Match
Host Order Match
|
RISB1755 |
Spodoptera frugiperda
Order: Lepidoptera
|
may influence the metabolization of pesticides in insects
|
0.02% |
16.2
|
Microbacterium arborescens
Species-level Match
Host Order Match
|
RISB1761 |
Spodoptera frugiperda
Order: Lepidoptera
|
may influence the metabolization of pesticides in insects
|
0.00% |
16.1
|
Stenotrophomonas sp. ZAC14A_NAIMI4_1
Species-level Match
Host Order Match
|
RISB0031 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.03% |
16.1
|
Citrobacter freundii
Species-level Match
Host Order Match
|
RISB2458 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
0.04% |
16.0
|
Citrobacter freundii complex sp. CFNIH2
Species-level Match
Host Order Match
|
RISB2458 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
0.00% |
16.0
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB2120 |
Galleria mellonella
Order: Lepidoptera
|
mediate trans-generational immune priming
|
0.11% |
15.9
|
Pseudomonas sp. F3-2
Species-level Match
Host Order Match
|
RISB0286 |
Diatraea saccharalis
Order: Lepidoptera
|
associated with cellulose degradation
|
0.01% |
15.8
|
Pseudomonas sp. HR96
Species-level Match
Host Order Match
|
RISB0286 |
Diatraea saccharalis
Order: Lepidoptera
|
associated with cellulose degradation
|
0.00% |
15.7
|
Erwinia sp. E602
Species-level Match
Host Order Match
|
RISB1986 |
Bombyx mori
Order: Lepidoptera
|
producing cellulase and amylase
|
0.03% |
15.7
|
Erwinia sp. QL-Z3
Species-level Match
Host Order Match
|
RISB1986 |
Bombyx mori
Order: Lepidoptera
|
producing cellulase and amylase
|
0.02% |
15.6
|
Erwinia sp. HDF1-3R
Species-level Match
Host Order Match
|
RISB1986 |
Bombyx mori
Order: Lepidoptera
|
producing cellulase and amylase
|
0.01% |
15.6
|
Pseudomonas sp. F3-2
Species-level Match
Host Order Match
|
RISB0785 |
Samia ricini
Order: Lepidoptera
|
cellulolytic activity
|
0.01% |
15.4
|
Citrobacter freundii
Species-level Match
Host Order Match
|
RISB0506 |
Plutella xylostella
Order: Lepidoptera
|
None
|
0.04% |
15.0
|
Cedecea lapagei
Species-level Match
Host Order Match
|
RISB0504 |
Plutella xylostella
Order: Lepidoptera
|
None
|
0.00% |
15.0
|
Streptomyces
Host Order Match
|
RISB1313 |
Bombyx mori
Order: Lepidoptera
|
produce Bombyxamycin A which showed significant antibacterial and antiproliferative effects
|
0.02% |
11.8
|
Rahnella aquatilis
Species-level Match
|
RISB1623 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.01% |
9.8
|
Sodalis praecaptivus
Species-level Match
|
RISB0122 |
Nezara viridula
Order: Hemiptera
|
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies.
|
0.00% |
8.6
|
Raoultella sp. HC6
Species-level Match
|
RISB2226 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.00% |
8.3
|
Morganella morganii
Species-level Match
|
RISB0772 |
Delia antiqua
Order: Diptera
|
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.00% |
8.3
|
Leucobacter aridicollis
Species-level Match
|
RISB0771 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.01% |
8.3
|
Sodalis praecaptivus
Species-level Match
|
RISB1718 |
Sitophilus zeamais
Order: Coleoptera
|
we investigated the role of a quorum sensing(QS ) system in S. praecaptivus and found that it negatively regulates a potent insect-killing phenotype
|
0.00% |
8.0
|
Morganella morganii
Species-level Match
|
RISB0008 |
Phormia regina
Order: Diptera
|
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
0.00% |
8.0
|
Morganella morganii
Species-level Match
|
RISB1867 |
Costelytra zealandica
Order: Coleoptera
|
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
|
0.00% |
7.8
|
Escherichia coli
Species-level Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
0.11% |
7.8
|
Exiguobacterium sp. 9-2
Species-level Match
|
RISB0007 |
Phormia regina
Order: Diptera
|
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
0.07% |
7.8
|
Exiguobacterium sp. MH3
Species-level Match
|
RISB0007 |
Phormia regina
Order: Diptera
|
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
0.02% |
7.7
|
Exiguobacterium sp. ZWU0009
Species-level Match
|
RISB0007 |
Phormia regina
Order: Diptera
|
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
0.00% |
7.7
|
Rahnella aquatilis
Species-level Match
|
RISB1800 |
Dendroctonus valens
Order: Coleoptera
|
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth
|
0.01% |
7.2
|
Rahnella aquatilis
Species-level Match
|
RISB0741 |
Dendroctonus ponderosae
Order: Coleoptera
|
R. aquatilis decreased (−)-α-pinene (38%) and (+)-α-pinene (46%) by 40% and 45% (by GC-MS), respectively
|
0.01% |
7.1
|
Kosakonia sp. MUSA4
Species-level Match
|
RISB0810 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-16 oxidation pathway
|
0.02% |
6.4
|
Kosakonia sp. BYX6
Species-level Match
|
RISB0810 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-16 oxidation pathway
|
0.01% |
6.4
|
Kosakonia sp. SMBL-WEM22
Species-level Match
|
RISB0810 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-16 oxidation pathway
|
0.00% |
6.4
|
Cedecea lapagei
Species-level Match
|
RISB1570 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
0.00% |
5.7
|
Raoultella sp. HC6
Species-level Match
|
RISB1575 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
0.00% |
5.7
|
Salmonella enterica
Species-level Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
0.09% |
5.1
|
Streptomyces
|
RISB0334 |
Philanthus triangulum
Order: Hymenoptera
|
S. philanthi protect the offspring from opportunistic pathogens by producing antibiotics ,the beewolf protects S. philanthi from oxidative and nitrosative damage by producing protective enzymes and embalming the symbiont in a secretion containing long-chain hydrocarbons
|
0.02% |
5.0
|
Variovorax sp. WDL1
Species-level Match
|
RISB1712 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.01% |
5.0
|
Bosea sp. Tri-49
Species-level Match
|
RISB1702 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.01% |
5.0
|
Pseudocitrobacter corydidari
Species-level Match
|
RISB0696 |
Corydidarum magnifica
Order: Blattodea
|
None
|
0.00% |
5.0
|
Trabulsiella
|
RISB2201 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.00% |
5.0
|
Streptomyces
|
RISB2316 |
Philanthinus quattuordecimpunctatus
Order: Hymenoptera
|
host cultivate the actinomycete in specialized antennal gland reservoirs. Then symbionts are transferred to the larval cocoon, where they provide protection against pathogenic fungi by producing at least nine different antibiotics.
|
0.02% |
4.6
|
Caballeronia
|
RISB0399 |
Riptortus pedestris
Order: Hemiptera
|
in laboratory conditions, C. jiangsuensis significantly enhanced the development, body size, and reproductive potentials of R. pedestris, compared to individuals with no symbiotic bacteria.
|
0.00% |
3.8
|
Xanthomonas
|
RISB0498 |
Xylocopa appendiculata
Order: Hymenoptera
|
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
|
0.00% |
3.8
|
Pectobacterium
|
RISB1889 |
Pseudococcus longispinus
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.03% |
3.4
|
Symbiopectobacterium
|
RISB1889 |
Pseudococcus longispinus
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.01% |
3.4
|
Yokenella
|
RISB1492 |
Nezara viridula
Order: Hemiptera
|
help stinkbugs to feed on soybean developing seeds in spite of its chemical defenses by degrading isoflavonoids and deactivate soybean protease inhibitors
|
0.00% |
3.1
|
Caballeronia
|
RISB0276 |
Riptortus pedestris
Order: Hemiptera
|
Gut symbiont resulted in increase in the body size and weight of male adults;increased dispersal capacity of male adults especially for flight
|
0.00% |
2.8
|
Caballeronia
|
RISB0530 |
Anasa tristis
Order: Hemiptera
|
the symbiont Caballeronia prevents successful, long-term establishment of phytopathogenic Serratia marcescens in the squash bug
|
0.00% |
2.5
|
Comamonas
|
RISB2021 |
Bactrocera dorsalis
Order: Diptera
|
This group in the immature stages may be helping the insects to cope with oxidative stress by supplementing available oxygen.
|
0.01% |
2.5
|
Yersinia
|
RISB0492 |
Cimex hemipterus
Order: Hemiptera
|
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
|
0.02% |
2.4
|
Xanthomonas
|
RISB0217 |
Xylocopa appendiculata
Order: Hymenoptera
|
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
|
0.00% |
1.9
|
Nostoc
|
RISB0812 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-18 oxidation pathway
|
0.02% |
1.4
|
Vibrio
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.00% |
1.3
|
Pectobacterium
|
RISB0798 |
Pseudoregma bambucicola
Order: Hemiptera
|
may help P. bambucicola feed on the stalks of bamboo
|
0.03% |
1.1
|
Dickeya
|
RISB1086 |
Rhodnius prolixus
Order: Hemiptera
|
supply enzymatic biosynthesis of B-complex vitamins
|
0.04% |
1.1
|
Cronobacter
|
RISB0247 |
Tenebrio molitor
Order: Coleoptera
|
may be indirectly involved in the digestion of PE
|
0.04% |
1.0
|
Trabulsiella
|
RISB1685 |
Melolontha hippocastani
Order: Coleoptera
|
Involved in cellulose degradation
|
0.00% |
0.7
|
Comamonas
|
RISB1875 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.01% |
0.3
|
Kluyvera
|
RISB1064 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.02% |
0.2
|
Comamonas
|
RISB1061 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.01% |
0.2
|
Pectobacterium
|
RISB1772 |
Muscidae
Order: Diptera
|
None
|
0.03% |
0.0
|
Yersinia
|
RISB0407 |
Anaphes nitens
Order: Hymenoptera
|
None
|
0.02% |
0.0
|
Gibbsiella
|
RISB1320 |
Vespa mandarinia
Order: Hymenoptera
|
None
|
0.01% |
0.0
|
Cupriavidus
|
RISB0694 |
Alydus tomentosus
Order: Hemiptera
|
None
|
0.01% |
0.0
|
Lonsdalea
|
RISB1321 |
Vespa mandarinia
Order: Hymenoptera
|
None
|
0.00% |
0.0
|
Paraburkholderia
|
RISB0125 |
Physopelta gutta
Order: Hemiptera
|
None
|
0.00% |
0.0
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.