SRR24296968 - Eumaeus atala

Basic Information

Run: SRR24296968

Assay Type: WGS

Bioproject: PRJNA961367

Biosample: SAMN34359488

Bytes: 602135563

Center Name: LANGEBIO

Sequencing Information

Instrument: NextSeq 550

Library Layout: PAIRED

Library Selection: RANDOM

Platform: ILLUMINA

Geographic Information

Country: USA

Continent: North America

Location Name: USA: Florida

Latitude/Longitude: not collected

Sample Information

Host: Eumaeus atala

Isolation: -

Biosample Model: Metagenome or environmental

Collection Date: 2017-02-15

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Pantoea sp. SS70
RISB0300
Eumaeus atala
Order: Lepidoptera
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores
0.53%
40.5
Pantoea sp. SOD02
RISB0300
Eumaeus atala
Order: Lepidoptera
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores
0.46%
40.5
Pantoea sp. BRR-3P
RISB0300
Eumaeus atala
Order: Lepidoptera
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores
0.39%
40.4
Enterobacter mori
RISB1163
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
16.57%
22.1
Klebsiella pneumoniae
RISB2185
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.12%
20.1
Serratia marcescens
RISB2200
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.05%
20.1
Microbacterium oleivorans
RISB2194
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.00%
20.0
Serratia marcescens
RISB0477
Spodoptera litura
Order: Lepidoptera
The ingestion of bacteria negatively affected the development and nutritional physiology of insect. The bacteria after successful establishment started degrading the gut wall and invaded the haemocoel thereby causing the death of the host.
0.05%
19.8
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
0.11%
19.4
Stenotrophomonas maltophilia
RISB1122
Bombyx mori
Order: Lepidoptera
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
0.01%
19.0
Serratia marcescens
RISB1426
Maculinea alcon
Order: Lepidoptera
been associated with growth-promoting activity, is capable of producing volatile pyrazines, including 2,5-dimethylpyrazine and 3-ethyl-2,5-dimethylpyrazine, which are used as pheromones by ants
0.05%
18.9
Klebsiella oxytoca
RISB2565
Acrolepiopsis assectella
Order: Lepidoptera
Klebsiella oxytoca and Bacillus spp. produce the volatile alkyl disulfides present in the fecal pellets, which serve as kairomones to attract the parasitoid Diadromus pulchellus to the moth host
0.02%
18.9
Enterobacter ludwigii
RISB1543
Helicoverpa zea
Order: Lepidoptera
two immunity-related genes glucose oxidase (GOX) and lysozyme (LYZ) were more highly expressed in both salivary glands and midguts compared with MgCl2 solution-treated caterpillars
0.13%
18.7
Enterobacter sp. JBIWA008
RISB1392
Spodoptera frugiperda
Order: Lepidoptera
microbe-mediated assaults by maize defenses on the fall armyworm on the insect digestive and immune system reduced growth and elevated mortality in these insects
0.04%
18.3
Klebsiella oxytoca
RISB1508
Walshia miscecolorella
Order: Lepidoptera
Antibiotic-treated larvae suffered growth retardation on a diet containing plant extract or swainsonine. Gut bacteria showed toxin-degradation activities in vitro
0.02%
18.3
Enterococcus sp. FDAARGOS_375
RISB1393
Spodoptera frugiperda
Order: Lepidoptera
microbe-mediated assaults by maize defenses on the fall armyworm on the insect digestive and immune system reduced growth and elevated mortality in these insects
0.01%
18.2
Acinetobacter sp. Tol 5
RISB1500
Lymantria dispar
Order: Lepidoptera
Bacteria isolated from a host plant had a glycoside-degrading activity, which enhanced growth of the moth when larvae were fed on a toxin-containing diet
0.06%
18.1
Acinetobacter sp. C32I
RISB1500
Lymantria dispar
Order: Lepidoptera
Bacteria isolated from a host plant had a glycoside-degrading activity, which enhanced growth of the moth when larvae were fed on a toxin-containing diet
0.01%
18.1
Acinetobacter sp. Z1
RISB1500
Lymantria dispar
Order: Lepidoptera
Bacteria isolated from a host plant had a glycoside-degrading activity, which enhanced growth of the moth when larvae were fed on a toxin-containing diet
0.00%
18.1
Leclercia adecarboxylata
RISB1757
Spodoptera frugiperda
Order: Lepidoptera
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
0.05%
16.9
Microbacterium arborescens
RISB1759
Spodoptera frugiperda
Order: Lepidoptera
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
0.00%
16.8
Enterococcus sp. FDAARGOS_375
RISB1541
Plutella xylostella
Order: Lepidoptera
enhanced resistance to the widely used insecticide, chlorpyrifos, in P. xylostella
0.01%
16.7
Stenotrophomonas maltophilia
RISB1123
Bombyx mori
Order: Lepidoptera
confer a significant fitness advantage via nutritional (amino acids) upgrading
0.01%
16.6
Leclercia adecarboxylata
RISB1758
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.05%
16.2
Enterococcus casseliflavus
RISB1755
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.02%
16.2
Microbacterium arborescens
RISB1761
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.00%
16.1
Stenotrophomonas sp. ZAC14A_NAIMI4_1
RISB0031
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.03%
16.1
Citrobacter freundii
RISB2458
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
0.04%
16.0
Citrobacter freundii complex sp. CFNIH2
RISB2458
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
0.00%
16.0
Escherichia coli
RISB2120
Galleria mellonella
Order: Lepidoptera
mediate trans-generational immune priming
0.11%
15.9
Pseudomonas sp. F3-2
RISB0286
Diatraea saccharalis
Order: Lepidoptera
associated with cellulose degradation
0.01%
15.8
Pseudomonas sp. HR96
RISB0286
Diatraea saccharalis
Order: Lepidoptera
associated with cellulose degradation
0.00%
15.7
Erwinia sp. E602
RISB1986
Bombyx mori
Order: Lepidoptera
producing cellulase and amylase
0.03%
15.7
Erwinia sp. QL-Z3
RISB1986
Bombyx mori
Order: Lepidoptera
producing cellulase and amylase
0.02%
15.6
Erwinia sp. HDF1-3R
RISB1986
Bombyx mori
Order: Lepidoptera
producing cellulase and amylase
0.01%
15.6
Pseudomonas sp. F3-2
RISB0785
Samia ricini
Order: Lepidoptera
cellulolytic activity
0.01%
15.4
Citrobacter freundii
RISB0506
Plutella xylostella
Order: Lepidoptera
None
0.04%
15.0
Cedecea lapagei
RISB0504
Plutella xylostella
Order: Lepidoptera
None
0.00%
15.0
Streptomyces
RISB1313
Bombyx mori
Order: Lepidoptera
produce Bombyxamycin A which showed significant antibacterial and antiproliferative effects
0.02%
11.8
Rahnella aquatilis
RISB1623
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.01%
9.8
Sodalis praecaptivus
RISB0122
Nezara viridula
Order: Hemiptera
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies.
0.00%
8.6
Raoultella sp. HC6
RISB2226
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.00%
8.3
Morganella morganii
RISB0772
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.00%
8.3
Leucobacter aridicollis
RISB0771
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.01%
8.3
Sodalis praecaptivus
RISB1718
Sitophilus zeamais
Order: Coleoptera
we investigated the role of a quorum sensing(QS ) system in S. praecaptivus and found that it negatively regulates a potent insect-killing phenotype
0.00%
8.0
Morganella morganii
RISB0008
Phormia regina
Order: Diptera
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.00%
8.0
Morganella morganii
RISB1867
Costelytra zealandica
Order: Coleoptera
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
0.00%
7.8
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.11%
7.8
Exiguobacterium sp. 9-2
RISB0007
Phormia regina
Order: Diptera
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.07%
7.8
Exiguobacterium sp. MH3
RISB0007
Phormia regina
Order: Diptera
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.02%
7.7
Exiguobacterium sp. ZWU0009
RISB0007
Phormia regina
Order: Diptera
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.00%
7.7
Rahnella aquatilis
RISB1800
Dendroctonus valens
Order: Coleoptera
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth
0.01%
7.2
Rahnella aquatilis
RISB0741
Dendroctonus ponderosae
Order: Coleoptera
R. aquatilis decreased (−)-α-pinene (38%) and (+)-α-pinene (46%) by 40% and 45% (by GC-MS), respectively
0.01%
7.1
Kosakonia sp. MUSA4
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.02%
6.4
Kosakonia sp. BYX6
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.01%
6.4
Kosakonia sp. SMBL-WEM22
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.00%
6.4
Cedecea lapagei
RISB1570
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.00%
5.7
Raoultella sp. HC6
RISB1575
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.00%
5.7
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
0.09%
5.1
Streptomyces
RISB0334
Philanthus triangulum
Order: Hymenoptera
S. philanthi protect the offspring from opportunistic pathogens by producing antibiotics ,the beewolf protects S. philanthi from oxidative and nitrosative damage by producing protective enzymes and embalming the symbiont in a secretion containing long-chain hydrocarbons
0.02%
5.0
Variovorax sp. WDL1
RISB1712
Phlebotomus papatasi
Order: Diptera
None
0.01%
5.0
Bosea sp. Tri-49
RISB1702
Phlebotomus papatasi
Order: Diptera
None
0.01%
5.0
Pseudocitrobacter corydidari
RISB0696
Corydidarum magnifica
Order: Blattodea
None
0.00%
5.0
Trabulsiella
RISB2201
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.00%
5.0
Streptomyces
RISB2316
Philanthinus quattuordecimpunctatus
Order: Hymenoptera
host cultivate the actinomycete in specialized antennal gland reservoirs. Then symbionts are transferred to the larval cocoon, where they provide protection against pathogenic fungi by producing at least nine different antibiotics.
0.02%
4.6
Caballeronia
RISB0399
Riptortus pedestris
Order: Hemiptera
in laboratory conditions, C. jiangsuensis significantly enhanced the development, body size, and reproductive potentials of R. pedestris, compared to individuals with no symbiotic bacteria.
0.00%
3.8
Xanthomonas
RISB0498
Xylocopa appendiculata
Order: Hymenoptera
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
0.00%
3.8
Pectobacterium
RISB1889
Pseudococcus longispinus
Order: Hemiptera
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
0.03%
3.4
Symbiopectobacterium
RISB1889
Pseudococcus longispinus
Order: Hemiptera
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
0.01%
3.4
Yokenella
RISB1492
Nezara viridula
Order: Hemiptera
help stinkbugs to feed on soybean developing seeds in spite of its chemical defenses by degrading isoflavonoids and deactivate soybean protease inhibitors
0.00%
3.1
Caballeronia
RISB0276
Riptortus pedestris
Order: Hemiptera
Gut symbiont resulted in increase in the body size and weight of male adults;increased dispersal capacity of male adults especially for flight
0.00%
2.8
Caballeronia
RISB0530
Anasa tristis
Order: Hemiptera
the symbiont Caballeronia prevents successful, long-term establishment of phytopathogenic Serratia marcescens in the squash bug
0.00%
2.5
Comamonas
RISB2021
Bactrocera dorsalis
Order: Diptera
This group in the immature stages may be helping the insects to cope with oxidative stress by supplementing available oxygen.
0.01%
2.5
Yersinia
RISB0492
Cimex hemipterus
Order: Hemiptera
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
0.02%
2.4
Xanthomonas
RISB0217
Xylocopa appendiculata
Order: Hymenoptera
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
0.00%
1.9
Nostoc
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.02%
1.4
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.00%
1.3
Pectobacterium
RISB0798
Pseudoregma bambucicola
Order: Hemiptera
may help P. bambucicola feed on the stalks of bamboo
0.03%
1.1
Dickeya
RISB1086
Rhodnius prolixus
Order: Hemiptera
supply enzymatic biosynthesis of B-complex vitamins
0.04%
1.1
Cronobacter
RISB0247
Tenebrio molitor
Order: Coleoptera
may be indirectly involved in the digestion of PE
0.04%
1.0
Trabulsiella
RISB1685
Melolontha hippocastani
Order: Coleoptera
Involved in cellulose degradation
0.00%
0.7
Comamonas
RISB1875
Aedes aegypti
Order: Diptera
gut microbiome
0.01%
0.3
Kluyvera
RISB1064
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.02%
0.2
Comamonas
RISB1061
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.01%
0.2
Pectobacterium
RISB1772
Muscidae
Order: Diptera
None
0.03%
0.0
Yersinia
RISB0407
Anaphes nitens
Order: Hymenoptera
None
0.02%
0.0
Gibbsiella
RISB1320
Vespa mandarinia
Order: Hymenoptera
None
0.01%
0.0
Cupriavidus
RISB0694
Alydus tomentosus
Order: Hemiptera
None
0.01%
0.0
Lonsdalea
RISB1321
Vespa mandarinia
Order: Hymenoptera
None
0.00%
0.0
Paraburkholderia
RISB0125
Physopelta gutta
Order: Hemiptera
None
0.00%
0.0

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR24296968
574.2 MB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table