SRR24049324 - Sabethes glaucodaemon

Basic Information

Run: SRR24049324

Assay Type: WGS

Bioproject: PRJNA947063

Biosample: SAMN33837859

Bytes: 2254445778

Center Name: EVANDRO CHAGAS INSTITUTE

Sequencing Information

Instrument: NextSeq 500

Library Layout: PAIRED

Library Selection: unspecified

Platform: ILLUMINA

Geographic Information

Country: Brazil

Continent: South America

Location Name: Brazil: Maranhao

Latitude/Longitude: -

Sample Information

Host: Sabethes glaucodaemon

Isolation: -

Biosample Model: Invertebrate

Collection Date: 2021-10-25

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Stenotrophomonas maltophilia
RISB1227
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
25.72%
43.4
Stenotrophomonas maltophilia
RISB1141
Hermetia illucens
Order: Diptera
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
25.72%
42.5
Stenotrophomonas maltophilia
RISB1401
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
25.72%
42.1
Klebsiella pneumoniae
RISB1771
Muscidae
Order: Diptera
None
14.71%
29.7
Klebsiella pneumoniae
RISB2185
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
14.71%
24.7
Escherichia coli
RISB1769
Calliphoridae
Order: Diptera
None
7.18%
22.2
Klebsiella pneumoniae
RISB2459
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
14.71%
20.7
Enterobacter sp. T2
RISB0893
Bactrocera dorsalis
Order: Diptera
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
0.59%
20.6
Enterobacter sp. T2
RISB1338
Ceratitis capitata
Order: Diptera
Enterobacter sp. AA26 dry biomass can fully replace the brewer’s yeast as a protein source in medfly larval diet without any effect on the productivity and the biological quality of reared medfly of VIENNA 8 GSS
0.59%
19.8
Paenibacillus sp. FSL R7-0345
RISB0774
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.02%
18.3
Enterococcus faecalis
RISB1411
Bactrocera dorsalis
Order: Diptera
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
0.04%
17.6
Enterobacter sp. T2
RISB1311
Ceratitis capitata
Order: Diptera
it was shown to have positive effects in rearing efficiency when used as larval probiotics
0.59%
17.4
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
7.18%
16.5
Bacillus sp. N1-1
RISB0791
Anopheles barbirostris
Order: Diptera
without this midgut flora showed delayed development to become adult
0.00%
16.4
Enterococcus faecalis
RISB0095
Bactrocera minax
Order: Diptera
egrade phenols in unripe citrus in B. minax larvae
0.04%
16.0
Lactiplantibacillus plantarum
RISB0674
Drosophila melanogaster
Order: Diptera
could effectively inhibit fungal spore germinations
0.01%
16.0
Bacillus thuringiensis
RISB0820
Simulium tani
Order: Diptera
show resistance to some antibiotics
0.10%
15.8
Cedecea lapagei
RISB1570
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.00%
15.7
Paenibacillus sp. FSL R7-0345
RISB2098
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.02%
15.6
Providencia alcalifaciens
RISB1168
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
0.02%
15.6
Wolbachia
RISB0766
Aedes fluviatilis
Order: Diptera
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
0.53%
15.5
Bacillus cereus
RISB1872
Aedes aegypti
Order: Diptera
gut microbiome
0.18%
15.5
Asaia
RISB0854
Anopheles stephensi
Order: Diptera
Two complete operons encoding cytochrome bo3-type ubiquinol terminal oxidases (cyoABCD-1 and cyoABCD-2) were found in most Asaia genomes, possibly offering alternative terminal oxidases and allowing the flexible transition of respiratory pathways. Genes involved in the production of 2,3-butandiol and inositol have been found in Asaia sp. W12, possibly contributing to biofilm formation and stress tolerance.
0.34%
15.3
Wolbachia
RISB0779
Drosophila melanogaster
Order: Diptera
Wolbachia infection affects differential gene expression in Drosophila testis.Genes involved in carbohydrate metabolism, lysosomal degradation, proteolysis, lipid metabolism, and immune response were upregulated in the presence of Wolbachia
0.53%
15.3
Wolbachia
RISB1408
Anastrepha fraterculus
Order: Diptera
Wolbachia is the only known reproductive symbiont present in these morphotypes. Wolbachia reduced the ability for embryonic development in crosses involving cured females and infected males within each morphotype (uni-directional CI).
0.53%
15.2
Acetobacter
RISB1865
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.16%
15.2
Lactiplantibacillus plantarum
RISB0608
Drosophila melanogaster
Order: Diptera
None
0.01%
15.0
Buchnera aphidicola
RISB0051
Episyrphus balteatus
Order: Diptera
None
0.01%
15.0
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
7.18%
14.9
Acetobacter
RISB0961
Drosophila melanogaster
Order: Diptera
The exist of Acetobacter had a balancing effect on food ingestion when carbohydrate levels were high in the warmer months, stabilizing fitness components of flies across the year.
0.16%
13.7
Asaia
RISB0014
Aedes aegypti
Order: Diptera
The bacterium Asaia is considered a highly promising candidate for arboviral control in Aedes mosquitoes.Asaia could play a role in inhibiting CHIKV within Ae. aegypti.
0.34%
13.7
Citrobacter
RISB1503
Bactrocera dorsalis
Order: Diptera
Pesticide-degrading bacteria were frequently detected from pesticide-resistant insects. Susceptible insects became resistant after inoculation of the pesticide-degrading symbiont
0.02%
13.6
Citrobacter
RISB0192
Hermetia illucens
Order: Diptera
can directly promote the expression of two gene families related to intestinal protein metabolism: Hitryp serine protease trypsin family and Himtp metallopeptidase family
0.02%
13.4
Rickettsiella
RISB2479
Acyrthosiphon pisum
Order: Hemiptera
changes the insects’ body color from red to green in natural populations, the infection increased amounts of blue-green polycyclic quinones, whereas it had less of an effect on yellow-red carotenoid pigments
9.14%
13.3
Asaia
RISB2533
Anopheles stephensi
Order: Diptera
Asaia sp. strain effectively lodged in the female gut and salivary glands, sites that are crucial for Plasmodium sp. development and transmission
0.34%
13.2
Citrobacter
RISB1221
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.02%
12.7
Rickettsiella
RISB2262
Acyrthosiphon pisum
Order: Hemiptera
against this entomopathogen Pandora neoaphidis, reduce mortality and also decrease fungal sporulation on dead aphids which may help protect nearby genetically identical insects
9.14%
12.7
Shewanella
RISB1924
Anopheles gambiae
Order: Diptera
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
0.01%
12.6
Acetobacter
RISB0184
Drosophila melanogaster
Order: Diptera
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
0.16%
12.4
Proteus
RISB2315
Aedes aegypti
Order: Diptera
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
0.10%
12.2
Rickettsiella
RISB1739
Acyrthosiphon pisum
Order: Hemiptera
in an experiment with a single-injected isolate of Rickettsiella sp. wasps were also attracted to plants fed on by aphids without secondary symbionts
9.14%
12.1
Streptomyces sp. T12
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
2.92%
11.9
Streptomyces sp. T12
RISB2334
Sirex noctilio
Order: Hymenoptera
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
2.92%
11.6
Aeromonas
RISB2086
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.02%
10.6
Chryseobacterium
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.01%
10.6
Peribacillus
RISB1877
Aedes aegypti
Order: Diptera
gut microbiome
0.03%
10.3
Chryseobacterium
RISB1874
Aedes aegypti
Order: Diptera
gut microbiome
0.01%
10.3
Streptomyces sp. T12
RISB1134
mud dauber wasp
Order: Hymenoptera
secondary metabolites derived from a Streptomyces sp. displayed significant inhibitory activity against hexokinase II
2.92%
10.3
Proteus
RISB0054
Episyrphus balteatus
Order: Diptera
None
0.10%
10.1
Pseudomonas sp. CIP-10
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.23%
10.1
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
0.01%
10.0
Chryseobacterium
RISB0015
Aedes aegypti
Order: Diptera
None
0.01%
10.0
Serratia liquefaciens
RISB1624
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.09%
9.9
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
0.01%
9.8
Halomonas
RISB1808
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
8.38%
9.7
Clostridium sp. BNL1100
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.00%
9.2
Mammaliicoccus sciuri
RISB0075
Bombyx mori
Order: Lepidoptera
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
0.00%
9.0
Acinetobacter pittii
RISB1977
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
0.00%
8.8
Pseudomonas sp. CIP-10
RISB2224
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.23%
8.6
Halomonas
RISB1374
Bemisia tabaci
Order: Hemiptera
None
8.38%
8.4
Candidatus Portiera aleyrodidarum
RISB1193
Bemisia tabaci
Order: Hemiptera
synthesizing essential amino acid (e.g. tryptophan, leucine and L-Isoleucine), Bemisia tabaci provides vital nutritional support for growth, development and reproduction
0.00%
8.4
Sphingobacterium sp. BN32
RISB2227
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.01%
8.4
Sphingobacterium sp. LZ7M1
RISB2227
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.00%
8.3
Blattabacterium cuenoti
RISB0133
Panesthiinae
Order: Blattodea
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
0.00%
7.9
Enterococcus faecalis
RISB0497
Cryptolestes ferrugineus
Order: Coleoptera
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
0.04%
7.6
Serratia liquefaciens
RISB1801
Dendroctonus valens
Order: Coleoptera
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth
0.09%
7.3
Candidatus Portiera aleyrodidarum
RISB2289
Bemisia tabaci
Order: Hemiptera
encoding the capability to synthetize, or participate in the synthesis of, several amino acids and carotenoids,
0.00%
7.2
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
2.03%
7.0
Candidatus Portiera aleyrodidarum
RISB1973
Bemisia tabaci
Order: Hemiptera
a primary symbiont, which compensates for the deficient nutritional composition of its food sources
0.00%
7.0
Pseudomonas sp. CIP-10
RISB0700
Nilaparvata lugens
Order: Hemiptera
Pseudomonas sp. composition and abundance correlated with BPH survivability
0.23%
6.7
Serratia liquefaciens
RISB2461
Bombyx mori
Order: Lepidoptera
able to utilize three polysaccharides including CMcellulose, xylan and pectin
0.09%
6.6
Rhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
4.91%
6.5
Paenibacillus sp. FSL R7-0345
RISB0813
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-9 oxidation pathway
0.02%
6.4
Blattabacterium cuenoti
RISB0518
Cryptocercus punctulatus
Order: Blattodea
collaborative arginine biosynthesis
0.00%
5.7
Blattabacterium cuenoti
RISB0093
Blattella germanica
Order: Blattodea
obligate endosymbiont
0.00%
5.4
Staphylococcus epidermidis
RISB1070
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.01%
5.2
Burkholderia
RISB1172
Lagria villosa
Order: Coleoptera
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
0.16%
5.2
Flavobacterium johnsoniae
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
0.01%
5.0
Cedecea lapagei
RISB0504
Plutella xylostella
Order: Lepidoptera
None
0.00%
5.0
Candidatus Erwinia haradaeae
RISB1632
Lachninae
Order: Hemiptera
None
0.00%
5.0
Francisella
RISB1907
Bombyx mori
Order: Lepidoptera
After infection with F. tularensis, the induction of melanization and nodulation, which are immune responses to bacterial infection, were inhibited in silkworms. Pre-inoculation of silkworms with F. tularensis enhanced the expression of antimicrobial peptides and resistance to infection by pathogenic bacteria.
0.00%
5.0
Burkholderia
RISB1729
Lagria hirta
Order: Coleoptera
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
0.16%
4.5
Burkholderia
RISB0402
Riptortus pedestris
Order: Hemiptera
symbiont colonization induces the development of the midgut crypts via finely regulating the enterocyte cell cycles, enabling it to stably and abundantly colonize the generated spacious crypts of the bean bug host
0.16%
4.4
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
2.37%
3.7
Amycolatopsis
RISB0483
Trachymyrmex smithi
Order: Hymenoptera
inhibited the growth of Pseudonocardia symbionts under laboratory conditions. The novel analog nocamycin V from the strain was identified as the antibacterial compound
0.01%
3.4
Amycolatopsis
RISB0199
Trachymyrmex
Order: Hymenoptera
produce antibiotic EC0-0501 that has strong activity against ant-associated Actinobacteria and may also play a role in bacterial competition in this niche
0.01%
3.1
Proteus
RISB0001
Leptinotarsa decemlineata
Order: Coleoptera
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
0.10%
2.8
Bartonella
RISB1673
Apis mellifera
Order: Hymenoptera
a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream
0.00%
2.6
Yersinia
RISB0492
Cimex hemipterus
Order: Hemiptera
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
0.13%
2.6
Bacteroides
RISB0256
Leptocybe invasa
Order: Hymenoptera
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
0.01%
2.3
Bacteroides
RISB0090
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.01%
2.1
Streptococcus
RISB2625
Galleria mellonella
Order: Lepidoptera
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
0.10%
2.1
Bacteroides
RISB1183
Oryzaephilus surinamensis
Order: Coleoptera
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
0.01%
2.1
Corynebacterium
RISB0363
Pagiophloeus tsushimanus
Order: Coleoptera
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
0.04%
1.8
Streptococcus
RISB2624
Reticulitermes flavipes
Order: Blattodea
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
0.10%
1.7
Corynebacterium
RISB0531
Helicoverpa armigera
Order: Lepidoptera
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
0.04%
1.7
Bradyrhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
0.01%
1.6
Nostoc
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.01%
1.4
Streptococcus
RISB2604
Homona magnanima
Order: Lepidoptera
influence the growth of Bacillus thuringiensis in the larvae
0.10%
1.3
Paraclostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.01%
1.1
Lysinibacillus
RISB1416
Psammotermes hypostoma
Order: Blattodea
isolates showed significant cellulolytic activity
0.01%
1.0
Aeromonas
RISB2456
Bombyx mori
Order: Lepidoptera
able to utilize the CMcellulose and xylan
0.02%
0.8
Corynebacterium
RISB2360
Bombyx mori
Order: Lepidoptera
producing lipase in a gut environment
0.04%
0.8
Mycobacterium
RISB1156
Nicrophorus concolor
Order: Coleoptera
produces Antimicrobial compounds
0.06%
0.7
Aeromonas
RISB1145
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.02%
0.4
Priestia
RISB0839
Helicoverpa armigera
Order: Lepidoptera
producing amylase
0.01%
0.4
Lysinibacillus
RISB1066
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.01%
0.2
Yersinia
RISB0407
Anaphes nitens
Order: Hymenoptera
None
0.13%
0.1
Cupriavidus
RISB0694
Alydus tomentosus
Order: Hemiptera
None
0.01%
0.0
Helicobacter
RISB0662
Melanaphis bambusae
Order: Hemiptera
None
0.01%
0.0
Legionella
RISB1687
Polyplax serrata
Order: Phthiraptera
None
0.00%
0.0
Ralstonia
RISB0243
Spodoptera frugiperda
Order: Lepidoptera
None
0.00%
0.0
Neisseria
RISB0512
Plutella xylostella
Order: Lepidoptera
None
0.00%
0.0

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR24049324
2.1 GB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table