SRR24019323 - Sabethes chloropterus

Basic Information

Run: SRR24019323

Assay Type: WGS

Bioproject: PRJNA947063

Biosample: SAMN33837853

Bytes: 1314089634

Center Name: EVANDRO CHAGAS INSTITUTE

Sequencing Information

Instrument: NextSeq 500

Library Layout: PAIRED

Library Selection: unspecified

Platform: ILLUMINA

Geographic Information

Country: Brazil

Continent: South America

Location Name: Brazil: Maranhao

Latitude/Longitude: -

Sample Information

Host: Sabethes chloropterus

Isolation: -

Biosample Model: Invertebrate

Collection Date: 2021-10-21

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Stenotrophomonas maltophilia
RISB1227
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
20.69%
38.4
Stenotrophomonas maltophilia
RISB1141
Hermetia illucens
Order: Diptera
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
20.69%
37.5
Stenotrophomonas maltophilia
RISB1401
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
20.69%
37.0
Enterobacter sp. T2
RISB0893
Bactrocera dorsalis
Order: Diptera
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
1.86%
21.9
Enterobacter sp. T2
RISB1338
Ceratitis capitata
Order: Diptera
Enterobacter sp. AA26 dry biomass can fully replace the brewer’s yeast as a protein source in medfly larval diet without any effect on the productivity and the biological quality of reared medfly of VIENNA 8 GSS
1.86%
21.1
Wolbachia pipientis
RISB0766
Aedes fluviatilis
Order: Diptera
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
0.04%
20.0
Enterobacter sp. T2
RISB1311
Ceratitis capitata
Order: Diptera
it was shown to have positive effects in rearing efficiency when used as larval probiotics
1.86%
18.7
Streptomyces sp. T12
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
9.52%
18.5
Streptomyces sp. T12
RISB2334
Sirex noctilio
Order: Hymenoptera
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
9.52%
18.2
Wolbachia pipientis
RISB1515
Drosophila melanogaster
Order: Diptera
increases the recombination rate observed across two genomic intervals and increases the efficacy of natural selection in hosts
0.04%
17.6
Wolbachia pipientis
RISB1354
Drosophila melanogaster
Order: Diptera
Wolbachia influence octopamine metabolism in the Drosophila females, which is by the symbiont genotype
0.04%
17.1
Streptomyces sp. T12
RISB1134
mud dauber wasp
Order: Hymenoptera
secondary metabolites derived from a Streptomyces sp. displayed significant inhibitory activity against hexokinase II
9.52%
16.9
Staphylococcus
RISB0427
Anopheles sinensis
Order: Diptera
be identified in each part of the hyperendemic area of this study has a potential role to interact with malaria parasites.
4.26%
16.7
Bacillus thuringiensis
RISB0820
Simulium tani
Order: Diptera
show resistance to some antibiotics
0.25%
16.0
Escherichia coli
RISB1769
Calliphoridae
Order: Diptera
None
0.91%
15.9
Klebsiella pneumoniae
RISB1771
Muscidae
Order: Diptera
None
0.76%
15.8
Bacillus cereus
RISB1872
Aedes aegypti
Order: Diptera
gut microbiome
0.42%
15.7
Bacillus cereus
RISB1701
Phlebotomus papatasi
Order: Diptera
None
0.42%
15.4
Lactobacillus
RISB1866
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.02%
15.0
Buchnera aphidicola
RISB0051
Episyrphus balteatus
Order: Diptera
None
0.01%
15.0
Lactococcus
RISB0131
Ceratitis capitata
Order: Diptera
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The  colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
0.01%
15.0
Staphylococcus
RISB1881
Aedes aegypti
Order: Diptera
gut microbiome
4.26%
14.5
Acinetobacter
RISB0768
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.67%
14.0
Acinetobacter
RISB0421
Anopheles sinensis
Order: Diptera
Acinetobacter species increase the resistance of An. gambiae to Plasmodium development partly by the induction of anti-Plasmodium factors in Imd pathway
0.67%
13.7
Halomonas
RISB1808
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
12.20%
13.5
Lactococcus
RISB0113
Bactrocera dorsalis
Order: Diptera
increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities
0.01%
13.0
Lactobacillus
RISB0185
Drosophila melanogaster
Order: Diptera
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
0.02%
12.3
Rickettsiella
RISB2479
Acyrthosiphon pisum
Order: Hemiptera
changes the insects’ body color from red to green in natural populations, the infection increased amounts of blue-green polycyclic quinones, whereas it had less of an effect on yellow-red carotenoid pigments
8.14%
12.3
Halomonas
RISB1374
Bemisia tabaci
Order: Hemiptera
None
12.20%
12.2
Rickettsiella
RISB2262
Acyrthosiphon pisum
Order: Hemiptera
against this entomopathogen Pandora neoaphidis, reduce mortality and also decrease fungal sporulation on dead aphids which may help protect nearby genetically identical insects
8.14%
11.7
Lactobacillus
RISB1714
Drosophila melanogaster
Order: Diptera
It has the potential to reduce IMI-induced susceptibility to infection.
0.02%
11.4
Acinetobacter
RISB2083
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.67%
11.2
Komagataeibacter
RISB1883
Drosophila suzukii
Order: Diptera
produce volatile substances that attract female D. suzukii
0.03%
11.2
Rickettsiella
RISB1739
Acyrthosiphon pisum
Order: Hemiptera
in an experiment with a single-injected isolate of Rickettsiella sp. wasps were also attracted to plants fed on by aphids without secondary symbionts
8.14%
11.1
Klebsiella pneumoniae
RISB2185
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.76%
10.8
Pseudomonas sp. CIP-10
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.91%
10.7
Rhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
9.17%
10.7
Rickettsia
RISB1273
Culicoides impunctatus
Order: Diptera
possible symbiont-virus interactions
0.00%
10.7
Lactococcus
RISB1167
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
0.01%
10.6
Chryseobacterium
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.01%
10.6
Peribacillus
RISB1877
Aedes aegypti
Order: Diptera
gut microbiome
0.02%
10.3
Chryseobacterium
RISB1874
Aedes aegypti
Order: Diptera
gut microbiome
0.01%
10.3
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
0.91%
10.2
Vagococcus
RISB0042
Aldrichina grahami
Order: Diptera
None
0.04%
10.0
Arsenophonus sp. aPb
RISB1047
Aphis gossypii
Order: Hemiptera
secondary symbiont reduction led to reduction of the total life span and intrinsic rate of natural increase as well as appearance of the deformed dead offspring. H. defensa and Arsenophonus contributed to the fitness of A. gossypii by enhancing its performance, but not through parasitoid resistance.
0.02%
10.0
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
0.01%
10.0
Chryseobacterium
RISB0015
Aedes aegypti
Order: Diptera
None
0.01%
10.0
Serratia liquefaciens
RISB1624
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.19%
10.0
Rickettsia
RISB0588
Culicoides impunctatus
Order: Diptera
None
0.00%
10.0
Treponema primitia
RISB2377
termite
Order: Blattodea
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
0.00%
9.9
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
0.01%
9.8
Arsenophonus sp. aPb
RISB1300
Aphis gossypii
Order: Hemiptera
Arsenophonus sp. can have different effects on its hosts, including obligate mutualism in blood-sucking insects, improving the performance of whiteflies, or through facultative mutualism by protecting psyllids against parasitoid attacks.
0.02%
9.8
Staphylococcus
RISB0945
Callosobruchus maculatus
Order: Coleoptera
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
4.26%
9.3
Pseudomonas sp. CIP-10
RISB2224
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.91%
9.3
Clostridium sp. 001
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.01%
9.2
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.91%
8.6
Arsenophonus sp. aPb
RISB1048
Aphis gossypii
Order: Hemiptera
symbiont reduction led to reduction of the total life span and intrinsic rate of natural increase as well as appearance of the deformed dead offspring
0.02%
8.0
Blattabacterium cuenoti
RISB0133
Panesthiinae
Order: Blattodea
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
0.01%
8.0
Pseudomonas sp. CIP-10
RISB0700
Nilaparvata lugens
Order: Hemiptera
Pseudomonas sp. composition and abundance correlated with BPH survivability
0.91%
7.4
Serratia liquefaciens
RISB1801
Dendroctonus valens
Order: Coleoptera
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth
0.19%
7.4
Klebsiella pneumoniae
RISB2459
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
0.76%
6.8
Serratia liquefaciens
RISB2461
Bombyx mori
Order: Lepidoptera
able to utilize three polysaccharides including CMcellulose, xylan and pectin
0.19%
6.7
Blattabacterium cuenoti
RISB0518
Cryptocercus punctulatus
Order: Blattodea
collaborative arginine biosynthesis
0.01%
5.7
Blattabacterium cuenoti
RISB0093
Blattella germanica
Order: Blattodea
obligate endosymbiont
0.01%
5.4
Burkholderia
RISB1172
Lagria villosa
Order: Coleoptera
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
0.01%
5.0
Rickettsia
RISB0940
Bemisia tabaci
Order: Hemiptera
Rickettsia can be transmitted into plants via whitefly feeding and remain alive within the cotton plants for at least 2 weeks.Then the persistence of Rickettsia and its induced defense responses in cotton plants can increase the fitness of whitefly and, by this, Rickettsia may increase its infection and spread within its whitefly host
0.00%
5.0
Burkholderia
RISB1729
Lagria hirta
Order: Coleoptera
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
0.01%
4.3
Burkholderia
RISB0402
Riptortus pedestris
Order: Hemiptera
symbiont colonization induces the development of the midgut crypts via finely regulating the enterocyte cell cycles, enabling it to stably and abundantly colonize the generated spacious crypts of the bean bug host
0.01%
4.3
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
2.64%
4.0
Yersinia
RISB0492
Cimex hemipterus
Order: Hemiptera
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
0.36%
2.8
Bacteroides
RISB0256
Leptocybe invasa
Order: Hymenoptera
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
0.00%
2.3
Streptococcus
RISB2625
Galleria mellonella
Order: Lepidoptera
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
0.19%
2.2
Blautia
RISB0091
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.02%
2.1
Bacteroides
RISB0090
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.00%
2.1
Bacteroides
RISB1183
Oryzaephilus surinamensis
Order: Coleoptera
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
0.00%
2.0
Streptococcus
RISB2624
Reticulitermes flavipes
Order: Blattodea
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
0.19%
1.8
Nostoc
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.01%
1.4
Streptococcus
RISB2604
Homona magnanima
Order: Lepidoptera
influence the growth of Bacillus thuringiensis in the larvae
0.19%
1.4
Paraclostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.01%
1.1
Priestia
RISB0839
Helicoverpa armigera
Order: Lepidoptera
producing amylase
0.06%
0.4
Yersinia
RISB0407
Anaphes nitens
Order: Hymenoptera
None
0.36%
0.4
Flavobacterium
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
0.03%
0.0
Legionella
RISB1687
Polyplax serrata
Order: Phthiraptera
None
0.01%
0.0
Cupriavidus
RISB0694
Alydus tomentosus
Order: Hemiptera
None
0.01%
0.0
Helicobacter
RISB0662
Melanaphis bambusae
Order: Hemiptera
None
0.01%
0.0
Candidatus Profftia
RISB1664
Adelgidae
Order: Hemiptera
None
0.00%
0.0

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR24019323
1.2 GB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table