SRR23076818 - Tettigades limbata

Basic Information

Run: SRR23076818

Assay Type: WGS

Bioproject: PRJNA923375

Biosample: SAMN32721598

Bytes: 1726066276

Center Name: ARIZONA STATE UNIVERSITY

Sequencing Information

Instrument: Illumina HiSeq X

Library Layout: PAIRED

Library Selection: RANDOM

Platform: ILLUMINA

Geographic Information

Country: Chile

Continent: South America

Location Name: Chile: hills South of Sierra de Bellavista\, O'Higgins Region

Latitude/Longitude: 34.826 S 70.742 W

Sample Information

Host: Tettigades limbata

Isolation: -

Biosample Model: MIMS.me,MIGS/MIMS/MIMARKS.host-associated

Collection Date: 2014-12-13

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Candidatus Karelsulcia muelleri
RISB1591
Philaenus spumarius
Order: Hemiptera
None
98.03%
113.0
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
0.03%
20.0
Candidatus Walczuchella monophlebidarum
RISB2075
Llaveia axin axin
Order: Hemiptera
could be supplying most of these precursors for the amino acid biosynthesis as it has the potential to make ribulose-5P from ribose-1P and also PEP and pyruvate from glycolysis. It is also capable of producing homocysteine from homoserine for methionine biosynthesis,
0.02%
20.0
Serratia symbiotica
RISB0576
Acyrthosiphon pisum
Order: Hemiptera
process of regression from winged to wingless morph was inhibited by Serratia symbiotica. The existence of the symbiont did not affect the body mass and fecundity of adult aphids, but it increased the body weight of nymphs and temporally increased the quantity of a primary symbiont, Buchnera aphidicola
0.01%
20.0
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
0.03%
19.8
Serratia symbiotica
RISB0179
Acyrthosiphon pisum
Order: Hemiptera
harboring Serratia improved host aphid growth and fecundity but reduced longevity. Serratia defends aphids against P. japonica by impeding the predator's development and predation capacity, and modulating its foraging behavior
0.01%
19.5
Clostridium sp. DL-VIII
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.01%
19.2
Clostridium sp. BJN0001
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.00%
19.2
Candidatus Carsonella ruddii
RISB0394
Cacopsylla pyricola
Order: Hemiptera
Carsonella produces most essential amino acids (EAAs) for C. pyricola, Psyllophila complements the genes missing in Carsonella for the tryptophan pathway and synthesizes some vitamins and carotenoids
0.01%
19.0
Buchnera aphidicola
RISB0685
Acyrthosiphon pisum
Order: Hemiptera
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
0.03%
18.8
Serratia symbiotica
RISB1333
Adelges tsugae
Order: Hemiptera
help to maintain aphid fitness during heat stress to varying degrees; the presence of facultative symbionts like S. symbiotica may protect the obligate symbiont Buchnera
0.01%
18.4
Pseudomonas sp. C27(2019)
RISB0700
Nilaparvata lugens
Order: Hemiptera
Pseudomonas sp. composition and abundance correlated with BPH survivability
0.01%
16.5
Candidatus Walczuchella monophlebidarum
RISB2074
Llaveia axin axin
Order: Hemiptera
may provide metabolic precursors to the flavobacterial endosymbiont
0.02%
16.4
Candidatus Carsonella ruddii
RISB0748
Diaphorina citri
Order: Hemiptera
None
0.01%
15.0
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
0.01%
15.0
Escherichia coli
RISB0412
Melanaphis sacchari
Order: Hemiptera
None
0.01%
15.0
Burkholderia
RISB1327
Riptortus pedestris
Order: Hemiptera
fed with specific nutrients and also recycles host metabolic wastes in the insect gut, and in return, the bacterial symbiont provides the host with essential nutrients limited in the insect food, contributing to the rapid growth and enhanced reproduction of the bean bug host.
0.01%
15.0
Candidatus Erwinia haradaeae
RISB1632
Lachninae
Order: Hemiptera
None
0.00%
15.0
Burkholderia
RISB0402
Riptortus pedestris
Order: Hemiptera
symbiont colonization induces the development of the midgut crypts via finely regulating the enterocyte cell cycles, enabling it to stably and abundantly colonize the generated spacious crypts of the bean bug host
0.01%
14.3
Burkholderia
RISB0221
Riptortus pedestris
Order: Hemiptera
symbiont modulates Kr-h1 expression to enhance ovarian development and egg production of R. pedestris by increasing the biosynthesis of the two reproduction-associated proteins, hexamerin-α and vitellogenin
0.01%
14.1
Wolbachia
RISB1444
Laodelphax striatellus
Order: Hemiptera
Wolbachia-infected host embryonic development genes revealed Ddx1 mRNAs, which is required for host viability and in the germ line, accumulated in the posterior region of 3-day-old embryos
0.06%
13.8
Wolbachia
RISB1539
Cimex lectularius
Order: Hemiptera
wCle provisions the bed bug with B vitamins.It is likely that because of wCle’s nutritional contribution to the bed bug, its titer increases in relation to bed bug growth and development.
0.06%
13.8
Spiroplasma
RISB1737
Acyrthosiphon pisum
Order: Hemiptera
injected two Spiroplasma isolates into secondary symbiont-free aphids and found that wasps showed a significant preference for plants previously attacked by aphids without this symbiont
0.09%
13.8
Spiroplasma
RISB2263
Acyrthosiphon pisum
Order: Hemiptera
against this entomopathogen Pandora neoaphidis, reduce mortality and also decrease fungal sporulation on dead aphids which may help protect nearby genetically identical insects
0.09%
13.6
Spiroplasma
RISB0842
Dactylopius coccus
Order: Hemiptera
use the T4SS to interact with the Dactylopius cells, which show a strong interaction and molecular signaling in the symbiosis
0.09%
12.6
Yersinia
RISB0492
Cimex hemipterus
Order: Hemiptera
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
0.00%
12.4
Wolbachia
RISB0491
Cimex hemipterus
Order: Hemiptera
the disruption of the abundant Wolbachia could be related to the enhanced susceptibility towards the insecticides
0.06%
12.3
Bacillus sp. BS98
RISB2178
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.07%
10.1
Flavobacterium
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
0.04%
10.0
Bacillus thuringiensis
RISB2177
Armadillidae
Order: Isopoda
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.02%
10.0
Klebsiella pneumoniae
RISB2185
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.01%
10.0
Cupriavidus
RISB0694
Alydus tomentosus
Order: Hemiptera
None
0.01%
10.0
Helicobacter
RISB0662
Melanaphis bambusae
Order: Hemiptera
None
0.01%
10.0
Pseudomonas sp. C27(2019)
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.01%
9.8
Acinetobacter sp. NCu2D-2
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.01%
9.7
Bacillus thuringiensis
RISB0109
Tuta absoluta
Order: Lepidoptera
Individual exposure of B. thuringiensis isolates to P. absoluta revealed high susceptibility of the pest and could potentially be used to develop effective, safe and affordable microbial pesticides for the management of P. absoluta.
0.02%
9.7
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
0.01%
9.3
Mammaliicoccus sciuri
RISB0075
Bombyx mori
Order: Lepidoptera
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
0.01%
9.0
Streptomyces sp. T12
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.01%
9.0
Citrobacter sp. RHBSTW-00229
RISB1503
Bactrocera dorsalis
Order: Diptera
Pesticide-degrading bacteria were frequently detected from pesticide-resistant insects. Susceptible insects became resistant after inoculation of the pesticide-degrading symbiont
0.31%
8.9
Acinetobacter sp. NCu2D-2
RISB1978
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
0.01%
8.8
Acinetobacter pittii
RISB1977
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
0.00%
8.8
Streptomyces sp. T12
RISB2334
Sirex noctilio
Order: Hymenoptera
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
0.01%
8.7
Pseudomonas sp. C27(2019)
RISB2224
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.01%
8.4
Morganella morganii
RISB0772
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.01%
8.3
Arthrobacter sp. CJ23
RISB0769
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.00%
8.3
Paenibacillus sp. sptzw28
RISB0774
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.01%
8.3
Blattabacterium cuenoti
RISB0133
Panesthiinae
Order: Blattodea
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
0.08%
8.0
Morganella morganii
RISB0008
Phormia regina
Order: Diptera
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.01%
8.0
Morganella morganii
RISB1867
Costelytra zealandica
Order: Coleoptera
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
0.01%
7.9
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.01%
7.7
Streptomyces sp. T12
RISB1134
mud dauber wasp
Order: Hymenoptera
secondary metabolites derived from a Streptomyces sp. displayed significant inhibitory activity against hexokinase II
0.01%
7.4
Blattabacterium sp. DPU
RISB1534
Periplaneta fuliginosa
Order: Blattodea
involved in uric acid degradation, nitrogen assimilation and nutrient provisioning
0.01%
6.7
Paenibacillus sp. sptzw28
RISB0813
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-9 oxidation pathway
0.01%
6.4
Citrobacter sp. RHBSTW-00229
RISB1571
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.31%
6.0
Lactiplantibacillus plantarum
RISB0674
Drosophila melanogaster
Order: Diptera
could effectively inhibit fungal spore germinations
0.01%
6.0
Klebsiella pneumoniae
RISB2459
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
0.01%
6.0
Blattabacterium cuenoti
RISB0518
Cryptocercus punctulatus
Order: Blattodea
collaborative arginine biosynthesis
0.08%
5.8
Klebsiella pneumoniae
RISB1994
Diatraea saccharalis
Order: Lepidoptera
possess cellulose degrading activity
0.01%
5.7
Paenibacillus sp. sptzw28
RISB2098
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.01%
5.6
Chryseobacterium sp. Chry.R1
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.01%
5.6
Staphylococcus epidermidis
RISB1070
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.00%
5.2
Lactobacillus
RISB1866
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.02%
5.0
Lactiplantibacillus plantarum
RISB0608
Drosophila melanogaster
Order: Diptera
None
0.01%
5.0
Treponema
RISB2377
termite
Order: Blattodea
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
0.01%
4.9
Apibacter
RISB0603
Apis cerana
Order: Hymenoptera
The acquisition of genes for the degradation of the toxic monosaccharides potentiates Apibacter with the ability to utilize the pollen hydrolysis products, at the same time enabling monosaccharide detoxification for the host
0.00%
4.5
Photorhabdus
RISB2532
Manduca sexta
Order: Lepidoptera
produces a small-molecule antibiotic (E)-1,3-dihydroxy-2-(isopropyl)-5-(2-phenylethenyl)benzene (ST) that also acts as an inhibitor of phenoloxidase (PO) in the insect host Manduca sexta.
0.00%
3.7
Lactobacillus
RISB0292
Lymantria dispar asiatica
Order: Lepidoptera
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
0.02%
3.4
Lactobacillus
RISB0715
Spodoptera frugiperda
Order: Lepidoptera
Have the function of nutrient absorption, energy metabolism, the plant’s secondary metabolites degradation, insect immunity regulation, and so on
0.02%
2.9
Photorhabdus
RISB2573
Manduca sexta
Order: Lepidoptera
the bacteria are symbiotic with entomopathogenic nematodes but become pathogenic on release from the nematode into the insect blood system
0.00%
2.8
Bartonella
RISB1673
Apis mellifera
Order: Hymenoptera
a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream
0.00%
2.6
Bacteroides
RISB0256
Leptocybe invasa
Order: Hymenoptera
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
0.02%
2.3
Bacteroides
RISB0090
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.02%
2.1
Bacteroides
RISB1183
Oryzaephilus surinamensis
Order: Coleoptera
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
0.02%
2.1
Streptococcus
RISB2625
Galleria mellonella
Order: Lepidoptera
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
0.02%
2.0
Streptococcus
RISB2624
Reticulitermes flavipes
Order: Blattodea
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
0.02%
1.7
Rhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
0.03%
1.6
Bradyrhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
0.00%
1.6
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.01%
1.3
Photorhabdus
RISB0532
Drosophila melanogaster
Order: Diptera
produces toxin complex (Tc) toxins as major virulence factors
0.00%
1.2
Streptococcus
RISB2604
Homona magnanima
Order: Lepidoptera
influence the growth of Bacillus thuringiensis in the larvae
0.02%
1.2
Paraclostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.00%
1.1
Providencia
RISB1001
Anastrepha obliqua
Order: Diptera
improve the sexual competitiveness of males
0.03%
0.9
Providencia
RISB1574
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.03%
0.8
Providencia
RISB0984
Nasonia vitripennis
Order: Hymenoptera
may highly associated with diapause
0.03%
0.7
Mycobacterium
RISB1156
Nicrophorus concolor
Order: Coleoptera
produces Antimicrobial compounds
0.00%
0.6
Priestia
RISB0839
Helicoverpa armigera
Order: Lepidoptera
producing amylase
0.01%
0.4
Neisseria
RISB0512
Plutella xylostella
Order: Lepidoptera
None
0.02%
0.0
Treponema
RISB0169
Reticulitermes flaviceps
Order: Blattodea
None
0.01%
0.0
Yersinia
RISB0407
Anaphes nitens
Order: Hymenoptera
None
0.00%
0.0
Apibacter
RISB0604
Apis cerana
Order: Hymenoptera
None
0.00%
0.0
Legionella
RISB1687
Polyplax serrata
Order: Phthiraptera
None
0.00%
0.0

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR23076818
1.6 GB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table