SRR23076792 - Tettigades ulnaria

Basic Information

Run: SRR23076792

Assay Type: WGS

Bioproject: PRJNA923375

Biosample: SAMN32721590

Bytes: 1981736834

Center Name: ARIZONA STATE UNIVERSITY

Sequencing Information

Instrument: Illumina HiSeq X

Library Layout: PAIRED

Library Selection: RANDOM

Platform: ILLUMINA

Geographic Information

Country: Chile

Continent: South America

Location Name: Chile: side of the road near Putaendo\, Valparaiso Region

Latitude/Longitude: 32.588 S 70.715 W

Sample Information

Host: Tettigades ulnaria

Isolation: -

Biosample Model: MIMS.me,MIGS/MIMS/MIMARKS.host-associated

Collection Date: 2017-01

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Candidatus Karelsulcia muelleri
RISB1591
Philaenus spumarius
Order: Hemiptera
None
96.90%
111.9
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
0.06%
20.1
Candidatus Walczuchella monophlebidarum
RISB2075
Llaveia axin axin
Order: Hemiptera
could be supplying most of these precursors for the amino acid biosynthesis as it has the potential to make ribulose-5P from ribose-1P and also PEP and pyruvate from glycolysis. It is also capable of producing homocysteine from homoserine for methionine biosynthesis,
0.04%
20.0
Serratia symbiotica
RISB0576
Acyrthosiphon pisum
Order: Hemiptera
process of regression from winged to wingless morph was inhibited by Serratia symbiotica. The existence of the symbiont did not affect the body mass and fecundity of adult aphids, but it increased the body weight of nymphs and temporally increased the quantity of a primary symbiont, Buchnera aphidicola
0.01%
20.0
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
0.06%
19.8
Serratia symbiotica
RISB0179
Acyrthosiphon pisum
Order: Hemiptera
harboring Serratia improved host aphid growth and fecundity but reduced longevity. Serratia defends aphids against P. japonica by impeding the predator's development and predation capacity, and modulating its foraging behavior
0.01%
19.5
Candidatus Nasuia deltocephalinicola
RISB2283
Nephotettix cincticeps
Order: Hemiptera
Oral administration of tetracycline to nymphal N. cincticeps resulted in retarded growth, high mortality rates, and failure in adult emergence, suggesting important biological roles of the symbionts for the host insect
0.00%
19.4
Clostridium sp. DL-VIII
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.02%
19.2
Clostridium sp. AWRP
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.00%
19.2
Candidatus Carsonella ruddii
RISB0394
Cacopsylla pyricola
Order: Hemiptera
Carsonella produces most essential amino acids (EAAs) for C. pyricola, Psyllophila complements the genes missing in Carsonella for the tryptophan pathway and synthesizes some vitamins and carotenoids
0.01%
19.0
Buchnera aphidicola
RISB0685
Acyrthosiphon pisum
Order: Hemiptera
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
0.06%
18.9
Serratia symbiotica
RISB1333
Adelges tsugae
Order: Hemiptera
help to maintain aphid fitness during heat stress to varying degrees; the presence of facultative symbionts like S. symbiotica may protect the obligate symbiont Buchnera
0.01%
18.4
Candidatus Portiera aleyrodidarum
RISB1193
Bemisia tabaci
Order: Hemiptera
synthesizing essential amino acid (e.g. tryptophan, leucine and L-Isoleucine), Bemisia tabaci provides vital nutritional support for growth, development and reproduction
0.00%
18.4
Candidatus Nasuia deltocephalinicola
RISB2282
Nephotettix cincticeps
Order: Hemiptera
With the antibiotic, nymphal growth was remarkably retarded, and a number of nymphs either died or failed to attain adulthood
0.00%
17.5
Candidatus Nasuia deltocephalinicola
RISB0262
Maiestas dorsalis
Order: Hemiptera
are responsible for synthesizing two essential amino acids (histidine and methionine) and riboflavin (vitamin B2)
0.00%
17.3
Candidatus Portiera aleyrodidarum
RISB2289
Bemisia tabaci
Order: Hemiptera
encoding the capability to synthetize, or participate in the synthesis of, several amino acids and carotenoids,
0.00%
17.2
Candidatus Portiera aleyrodidarum
RISB1973
Bemisia tabaci
Order: Hemiptera
a primary symbiont, which compensates for the deficient nutritional composition of its food sources
0.00%
17.0
Enterococcus faecalis
RISB0336
Riptortus pedestris
Order: Hemiptera
can be utilized as a novel probiotic which increase the survival rate of insects
0.02%
16.6
Lactococcus lactis
RISB0337
Riptortus pedestris
Order: Hemiptera
can be utilized as a novel probiotic which increase the survival rate of insects
0.00%
16.6
Pseudomonas sp. CIP-10
RISB0700
Nilaparvata lugens
Order: Hemiptera
Pseudomonas sp. composition and abundance correlated with BPH survivability
0.01%
16.5
Pseudomonas sp. REST10
RISB0700
Nilaparvata lugens
Order: Hemiptera
Pseudomonas sp. composition and abundance correlated with BPH survivability
0.00%
16.5
Candidatus Walczuchella monophlebidarum
RISB2074
Llaveia axin axin
Order: Hemiptera
may provide metabolic precursors to the flavobacterial endosymbiont
0.04%
16.4
Escherichia coli
RISB0412
Melanaphis sacchari
Order: Hemiptera
None
0.02%
15.0
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
0.02%
15.0
Candidatus Carsonella ruddii
RISB0748
Diaphorina citri
Order: Hemiptera
None
0.01%
15.0
Rickettsia canadensis
RISB1898
Bemisia tabaci
Order: Hemiptera
None
0.01%
15.0
Candidatus Cardinium
RISB0223
Bemisia tabaci
Order: Hemiptera
Cardinium could inhibit the defense response of the host plant and decrease the detoxification metabolism ability of the host whitefly, decrease the expression of detoxification metabolism genes, especially the uridine 5'-diphospho-glucuronyltransferase and P450 genes,
0.01%
15.0
Staphylococcus xylosus
RISB0672
Melanaphis bambusae
Order: Hemiptera
None
0.00%
15.0
Candidatus Erwinia haradaeae
RISB1632
Lachninae
Order: Hemiptera
None
0.00%
15.0
Pantoea
RISB0118
Nezara viridula
Order: Hemiptera
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies;transmitted bacteria impacted plant chemical defenses and were able to degrade toxic plant metabolites, aiding the shield bug in its nutrition
0.00%
15.0
Pantoea
RISB1715
Dolycoris baccarum
Order: Hemiptera
The sterilization-produced aposymbiotic nymphs showed high mortality and no insects reached adulthood. In addition, the Pantoea symbiont was uncultivable outside the insect host, indicating an obligate and intimate host-symbiont association
0.00%
14.8
Wolbachia
RISB1444
Laodelphax striatellus
Order: Hemiptera
Wolbachia-infected host embryonic development genes revealed Ddx1 mRNAs, which is required for host viability and in the germ line, accumulated in the posterior region of 3-day-old embryos
0.07%
13.8
Wolbachia
RISB1539
Cimex lectularius
Order: Hemiptera
wCle provisions the bed bug with B vitamins.It is likely that because of wCle’s nutritional contribution to the bed bug, its titer increases in relation to bed bug growth and development.
0.07%
13.8
Pantoea
RISB0119
Nezara viridula
Order: Hemiptera
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies.
0.00%
13.6
Yersinia
RISB0492
Cimex hemipterus
Order: Hemiptera
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
0.01%
12.4
Wolbachia
RISB0491
Cimex hemipterus
Order: Hemiptera
the disruption of the abundant Wolbachia could be related to the enhanced susceptibility towards the insecticides
0.07%
12.3
Candidatus Cardinium
RISB2290
Sogatella furcifera
Order: Hemiptera
dual infection with Cardinium and Wolbachia induced strong cytoplasmic incompatibility (CI) in a single host
0.01%
12.2
Candidatus Cardinium
RISB2296
Sogatella furcifera
Order: Hemiptera
could shorten the developmental time of nymphs and had no effect on the fecundity of females
0.01%
11.9
Flavobacterium
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
0.12%
10.1
Bacillus sp. BS98
RISB2178
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.08%
10.1
Bacillus cereus
RISB2161
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.02%
10.0
Klebsiella pneumoniae
RISB2185
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.02%
10.0
Bacillus thuringiensis
RISB2177
Armadillidae
Order: Isopoda
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.01%
10.0
Brevibacterium
RISB0897
Myzus persicae
Order: Hemiptera
None
0.01%
10.0
Helicobacter
RISB0662
Melanaphis bambusae
Order: Hemiptera
None
0.01%
10.0
Lactococcus lactis
RISB0131
Ceratitis capitata
Order: Diptera
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The  colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
0.00%
10.0
Micromonospora
RISB2033
Palomena viridissima
Order: Hemiptera
None
0.00%
10.0
Cupriavidus
RISB0694
Alydus tomentosus
Order: Hemiptera
None
0.00%
10.0
Pseudomonas sp. CIP-10
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.01%
9.8
Acinetobacter sp. NCu2D-2
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.02%
9.7
Acinetobacter sp. XS-4
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.01%
9.7
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
0.02%
9.3
Mammaliicoccus sciuri
RISB0075
Bombyx mori
Order: Lepidoptera
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
0.00%
9.0
Staphylococcus xylosus
RISB2497
Anticarsia gemmatalis
Order: Lepidoptera
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
0.00%
9.0
Streptomyces sp. T12
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.01%
9.0
Streptomyces sp. YIM 121038
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.00%
9.0
Acinetobacter sp. NCu2D-2
RISB1978
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
0.02%
8.8
Streptomyces sp. T12
RISB2334
Sirex noctilio
Order: Hymenoptera
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
0.01%
8.7
Lactococcus lactis
RISB0967
Oulema melanopus
Order: Coleoptera
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
0.00%
8.6
Sphingobacterium sp. UDSM-2020
RISB2227
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.00%
8.3
Morganella morganii
RISB0772
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.02%
8.3
Paenibacillus sp. FSL R5-0470
RISB0774
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.01%
8.3
Paenibacillus sp. sptzw28
RISB0774
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.00%
8.3
Blattabacterium cuenoti
RISB0133
Panesthiinae
Order: Blattodea
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
0.20%
8.1
Morganella morganii
RISB0008
Phormia regina
Order: Diptera
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.02%
8.0
Citrobacter freundii
RISB0517
Leptinotarsa decemlineata
Order: Coleoptera
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
0.02%
7.9
Morganella morganii
RISB1867
Costelytra zealandica
Order: Coleoptera
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
0.02%
7.9
Spiroplasma poulsonii
RISB1346
Drosophila melanogaster
Order: Diptera
S. poulsonii protects its host against parasitoid wasps and nematodes by the action of toxins from the family of Ribosome Inactivating Proteins
0.00%
7.9
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.02%
7.7
Citrobacter freundii
RISB0127
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.02%
7.7
Citrobacter freundii
RISB1221
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.02%
7.7
Exiguobacterium sp. MH3
RISB0007
Phormia regina
Order: Diptera
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.00%
7.7
Enterococcus faecalis
RISB0497
Cryptolestes ferrugineus
Order: Coleoptera
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
0.02%
7.6
Enterococcus faecalis
RISB1411
Bactrocera dorsalis
Order: Diptera
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
0.02%
7.6
Spiroplasma poulsonii
RISB2264
Drosophila melanogaster
Order: Diptera
Spiroplasma coopts the yolk transport and uptake machinery to colonize the germ line and ensure efficient vertical transmission
0.00%
7.5
Spiroplasma poulsonii
RISB1928
Drosophila melanogaster
Order: Diptera
supporting the hypothesis that competition for host lipids underlies S. poulsonii-mediated protection against parasitoid wasps
0.00%
7.5
Enterobacter cloacae
RISB1699
Plutella xylostella
Order: Lepidoptera
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
0.00%
7.5
Enterobacter cloacae
RISB2217
Thermobia domestica
Order: Zygentoma
Mediated by two microbial symbiont, the firebat saggregates in response to the faeces of conspecifics
0.00%
7.0
Enterobacter cloacae
RISB1428
Rhynchophorus ferrugineus
Order: Coleoptera
promote the development and body mass gain of RPW larvae by improving their nutrition metabolism
0.00%
6.9
Staphylococcus xylosus
RISB2247
Anticarsia gemmatalis
Order: Lepidoptera
mitigation of the negative effects of proteinase inhibitors produced by the host plant
0.00%
6.7
Blattabacterium sp. (Blaberus giganteus)
RISB1534
Periplaneta fuliginosa
Order: Blattodea
involved in uric acid degradation, nitrogen assimilation and nutrient provisioning
0.00%
6.6
Paenibacillus sp. FSL R5-0470
RISB0813
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-9 oxidation pathway
0.01%
6.4
Lactiplantibacillus plantarum
RISB0674
Drosophila melanogaster
Order: Diptera
could effectively inhibit fungal spore germinations
0.02%
6.0
Klebsiella pneumoniae
RISB2459
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
0.02%
6.0
Lysinibacillus fusiformis
RISB1417
Psammotermes hypostoma
Order: Blattodea
isolates showed significant cellulolytic activity
0.01%
6.0
Blattabacterium cuenoti
RISB0518
Cryptocercus punctulatus
Order: Blattodea
collaborative arginine biosynthesis
0.20%
5.9
Aeromonas sp. FDAARGOS 1411
RISB2456
Bombyx mori
Order: Lepidoptera
able to utilize the CMcellulose and xylan
0.02%
5.8
Klebsiella pneumoniae
RISB1994
Diatraea saccharalis
Order: Lepidoptera
possess cellulose degrading activity
0.02%
5.7
Aeromonas sp. FDAARGOS 1411
RISB2086
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.02%
5.6
Chryseobacterium sp. Chry.R1
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.02%
5.6
Chryseobacterium sp. 3008163
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.01%
5.6
Chryseobacterium sp. POL2
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.00%
5.6
Aeromonas sp. FDAARGOS 1411
RISB1145
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.02%
5.4
Exiguobacterium sp. MH3
RISB1152
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.00%
5.4
Lysinibacillus fusiformis
RISB1066
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.01%
5.2
Lactiplantibacillus plantarum
RISB0608
Drosophila melanogaster
Order: Diptera
None
0.02%
5.0
Lactobacillus
RISB1866
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.02%
5.0
Francisella
RISB1907
Bombyx mori
Order: Lepidoptera
After infection with F. tularensis, the induction of melanization and nodulation, which are immune responses to bacterial infection, were inhibited in silkworms. Pre-inoculation of silkworms with F. tularensis enhanced the expression of antimicrobial peptides and resistance to infection by pathogenic bacteria.
0.00%
5.0
Gilliamella
RISB0102
Apis mellifera
Order: Hymenoptera
Gilliamella apicola carries the gene for the desaturase FADS2, which is able to metabolize polyunsaturated fatty acids from pollen and synthesize endocannabinoid, a lipogenic neuroactive substance, thereby modulating reward learning and memory in honeybees.
0.00%
5.0
Treponema
RISB2377
termite
Order: Blattodea
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
0.03%
4.9
Weissella
RISB1982
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
0.00%
3.8
Xanthomonas
RISB0498
Xylocopa appendiculata
Order: Hymenoptera
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
0.02%
3.8
Photorhabdus
RISB2532
Manduca sexta
Order: Lepidoptera
produces a small-molecule antibiotic (E)-1,3-dihydroxy-2-(isopropyl)-5-(2-phenylethenyl)benzene (ST) that also acts as an inhibitor of phenoloxidase (PO) in the insect host Manduca sexta.
0.00%
3.7
Lactobacillus
RISB0292
Lymantria dispar asiatica
Order: Lepidoptera
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
0.02%
3.4
Candidatus Blochmanniella
RISB2542
Camponotus
Order: Hymenoptera
Blochmannia provide essential amino acids to its host,Camponotus floridanus, and that it may also play a role in nitrogen recycling via its functional urease
0.01%
3.2
Candidatus Blochmanniella
RISB1827
Camponotus floridanus
Order: Hymenoptera
a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission
0.01%
3.1
Carnobacterium
RISB1378
Thitarodes pui
Order: Lepidoptera
promote the growth of Thitarodes larvae, elevate bacterial diversity, maintain a better balance of intestinal flora, and act as a probiotic in Thitarodes
0.00%
3.1
Lactobacillus
RISB0715
Spodoptera frugiperda
Order: Lepidoptera
Have the function of nutrient absorption, energy metabolism, the plant’s secondary metabolites degradation, insect immunity regulation, and so on
0.02%
2.9
Photorhabdus
RISB2573
Manduca sexta
Order: Lepidoptera
the bacteria are symbiotic with entomopathogenic nematodes but become pathogenic on release from the nematode into the insect blood system
0.00%
2.8
Candidatus Blochmanniella
RISB2448
Camponotus floridanus
Order: Hymenoptera
nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling
0.01%
2.8
Weissella
RISB0641
Formica
Order: Hymenoptera
exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew
0.00%
2.7
Proteus
RISB0001
Leptinotarsa decemlineata
Order: Coleoptera
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
0.00%
2.7
Bartonella
RISB1673
Apis mellifera
Order: Hymenoptera
a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream
0.01%
2.6
Shewanella
RISB1924
Anopheles gambiae
Order: Diptera
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
0.01%
2.6
Carnobacterium
RISB1693
Plutella xylostella
Order: Lepidoptera
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
0.00%
2.5
Bacteroides
RISB0256
Leptocybe invasa
Order: Hymenoptera
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
0.02%
2.3
Bacteroides
RISB0090
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.02%
2.1
Proteus
RISB2315
Aedes aegypti
Order: Diptera
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
0.00%
2.1
Bacteroides
RISB1183
Oryzaephilus surinamensis
Order: Coleoptera
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
0.02%
2.1
Streptococcus
RISB2625
Galleria mellonella
Order: Lepidoptera
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
0.02%
2.0
Xanthomonas
RISB0217
Xylocopa appendiculata
Order: Hymenoptera
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
0.02%
2.0
Streptococcus
RISB2624
Reticulitermes flavipes
Order: Blattodea
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
0.02%
1.7
Carnobacterium
RISB1692
Plutella xylostella
Order: Lepidoptera
participate in the synthesis of host lacking amino acids histidine and threonine
0.00%
1.6
Rhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
0.01%
1.6
Candidatus Nardonella
RISB2449
Euscepes postfasciatus
Order: Coleoptera
endosymbiont is involved in normal growth and development of the host weevil
0.00%
1.5
Candidatus Nardonella
RISB1931
Lissorhoptrus oryzophilus
Order: Coleoptera
might be not playing critical roles in the reproduction of L. oryzophilus
0.00%
1.5
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.01%
1.3
Photorhabdus
RISB0532
Drosophila melanogaster
Order: Diptera
produces toxin complex (Tc) toxins as major virulence factors
0.00%
1.2
Streptococcus
RISB2604
Homona magnanima
Order: Lepidoptera
influence the growth of Bacillus thuringiensis in the larvae
0.02%
1.2
Paraclostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.01%
1.1
Proteus
RISB2460
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
0.00%
1.0
Brevibacterium
RISB0464
Acrida cinerea
Order: Orthoptera
correlated with the hemicellulose digestibility
0.01%
1.0
Providencia
RISB1001
Anastrepha obliqua
Order: Diptera
improve the sexual competitiveness of males
0.01%
0.9
Candidatus Nardonella
RISB1668
Multiple species
Order: Coleoptera
Possibly tyrosine precursor provisioning
0.00%
0.8
Brevibacterium
RISB2359
Bombyx mori
Order: Lepidoptera
producing lipase in a gut environment
0.01%
0.8
Nocardioides
RISB1914
Hyles euphorbiae
Order: Lepidoptera
able to degrade alkaloids and/or latex
0.00%
0.8
Providencia
RISB1574
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.01%
0.7
Providencia
RISB0984
Nasonia vitripennis
Order: Hymenoptera
may highly associated with diapause
0.01%
0.7
Priestia
RISB0839
Helicoverpa armigera
Order: Lepidoptera
producing amylase
0.01%
0.4
Gilliamella
RISB0620
Spodoptera frugiperda
Order: Lepidoptera
degrade amygdalin
0.00%
0.3
Peribacillus
RISB1877
Aedes aegypti
Order: Diptera
gut microbiome
0.01%
0.3
Treponema
RISB0169
Reticulitermes flaviceps
Order: Blattodea
None
0.03%
0.0
Neisseria
RISB0512
Plutella xylostella
Order: Lepidoptera
None
0.02%
0.0
Yersinia
RISB0407
Anaphes nitens
Order: Hymenoptera
None
0.01%
0.0
Legionella
RISB1687
Polyplax serrata
Order: Phthiraptera
None
0.01%
0.0
Micromonospora
RISB2034
Harpalus sinicus
Order: Coleoptera
None
0.00%
0.0
Gilliamella
RISB1945
Apis cerana
Order: Hymenoptera
None
0.00%
0.0
Weissella
RISB1566
Liometopum apiculatum
Order: Hymenoptera
None
0.00%
0.0
Vagococcus
RISB0042
Aldrichina grahami
Order: Diptera
None
0.00%
0.0

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR23076792
1.8 GB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table