SRR23076790 - Tettigades undata
Basic Information
Run: SRR23076790
Assay Type: WGS
Bioproject: PRJNA923375
Biosample: SAMN32721592
Bytes: 2031553951
Center Name: ARIZONA STATE UNIVERSITY
Sequencing Information
Instrument: Illumina HiSeq X
Library Layout: PAIRED
Library Selection: RANDOM
Platform: ILLUMINA
Geographic Information
Country: Chile
Continent: South America
Location Name: Chile: side of the road to Termas de Chillan\, Bio Bio Region
Latitude/Longitude: 36.903 S 71.537 W
Sample Information
Host: Tettigades undata
Isolation: -
Biosample Model: MIMS.me,MIGS/MIMS/MIMARKS.host-associated
Collection Date: 2017-01-06
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Candidatus Karelsulcia muelleri
Species-level Match
Host Order Match
|
RISB1591 |
Philaenus spumarius
Order: Hemiptera
|
None
|
94.60% |
109.6
|
Buchnera aphidicola
Species-level Match
Host Order Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
0.12% |
20.1
|
Candidatus Walczuchella monophlebidarum
Species-level Match
Host Order Match
|
RISB2075 |
Llaveia axin axin
Order: Hemiptera
|
could be supplying most of these precursors for the amino acid biosynthesis as it has the potential to make ribulose-5P from ribose-1P and also PEP and pyruvate from glycolysis. It is also capable of producing homocysteine from homoserine for methionine biosynthesis,
|
0.04% |
20.0
|
Serratia symbiotica
Species-level Match
Host Order Match
|
RISB0576 |
Acyrthosiphon pisum
Order: Hemiptera
|
process of regression from winged to wingless morph was inhibited by Serratia symbiotica. The existence of the symbiont did not affect the body mass and fecundity of adult aphids, but it increased the body weight of nymphs and temporally increased the quantity of a primary symbiont, Buchnera aphidicola
|
0.01% |
20.0
|
Buchnera aphidicola
Species-level Match
Host Order Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
0.12% |
19.9
|
Serratia symbiotica
Species-level Match
Host Order Match
|
RISB0179 |
Acyrthosiphon pisum
Order: Hemiptera
|
harboring Serratia improved host aphid growth and fecundity but reduced longevity. Serratia defends aphids against P. japonica by impeding the predator's development and predation capacity, and modulating its foraging behavior
|
0.01% |
19.5
|
Clostridium sp. DL-VIII
Species-level Match
Host Order Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.03% |
19.3
|
Clostridium sp. AWRP
Species-level Match
Host Order Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.01% |
19.2
|
Clostridium sp. MB40-C1
Species-level Match
Host Order Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.00% |
19.2
|
Candidatus Carsonella ruddii
Species-level Match
Host Order Match
|
RISB0394 |
Cacopsylla pyricola
Order: Hemiptera
|
Carsonella produces most essential amino acids (EAAs) for C. pyricola, Psyllophila complements the genes missing in Carsonella for the tryptophan pathway and synthesizes some vitamins and carotenoids
|
0.01% |
19.0
|
Buchnera aphidicola
Species-level Match
Host Order Match
|
RISB0685 |
Acyrthosiphon pisum
Order: Hemiptera
|
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
|
0.12% |
18.9
|
Serratia symbiotica
Species-level Match
Host Order Match
|
RISB1333 |
Adelges tsugae
Order: Hemiptera
|
help to maintain aphid fitness during heat stress to varying degrees; the presence of facultative symbionts like S. symbiotica may protect the obligate symbiont Buchnera
|
0.01% |
18.4
|
Candidatus Portiera aleyrodidarum
Species-level Match
Host Order Match
|
RISB1193 |
Bemisia tabaci
Order: Hemiptera
|
synthesizing essential amino acid (e.g. tryptophan, leucine and L-Isoleucine), Bemisia tabaci provides vital nutritional support for growth, development and reproduction
|
0.01% |
18.4
|
Candidatus Moranella endobia
Species-level Match
Host Order Match
|
RISB2232 |
Planococcus citri
Order: Hemiptera
|
be responsible for the biosynthesis of most cellular components and energy provision, and controls most informational processes for the consortium
|
0.00% |
17.9
|
Spiroplasma ixodetis
Species-level Match
Host Order Match
|
RISB0842 |
Dactylopius coccus
Order: Hemiptera
|
use the T4SS to interact with the Dactylopius cells, which show a strong interaction and molecular signaling in the symbiosis
|
0.01% |
17.5
|
Candidatus Portiera aleyrodidarum
Species-level Match
Host Order Match
|
RISB2289 |
Bemisia tabaci
Order: Hemiptera
|
encoding the capability to synthetize, or participate in the synthesis of, several amino acids and carotenoids,
|
0.01% |
17.2
|
Candidatus Portiera aleyrodidarum
Species-level Match
Host Order Match
|
RISB1973 |
Bemisia tabaci
Order: Hemiptera
|
a primary symbiont, which compensates for the deficient nutritional composition of its food sources
|
0.01% |
17.0
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB0336 |
Riptortus pedestris
Order: Hemiptera
|
can be utilized as a novel probiotic which increase the survival rate of insects
|
0.02% |
16.6
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB0337 |
Riptortus pedestris
Order: Hemiptera
|
can be utilized as a novel probiotic which increase the survival rate of insects
|
0.01% |
16.6
|
Pseudomonas sp. REST10
Species-level Match
Host Order Match
|
RISB0700 |
Nilaparvata lugens
Order: Hemiptera
|
Pseudomonas sp. composition and abundance correlated with BPH survivability
|
0.01% |
16.5
|
Candidatus Walczuchella monophlebidarum
Species-level Match
Host Order Match
|
RISB2074 |
Llaveia axin axin
Order: Hemiptera
|
may provide metabolic precursors to the flavobacterial endosymbiont
|
0.04% |
16.4
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB0412 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
0.06% |
15.1
|
Salmonella enterica
Species-level Match
Host Order Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
0.04% |
15.0
|
Flavobacterium johnsoniae
Species-level Match
Host Order Match
|
RISB0659 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.02% |
15.0
|
Staphylococcus xylosus
Species-level Match
Host Order Match
|
RISB0672 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.02% |
15.0
|
Candidatus Carsonella ruddii
Species-level Match
Host Order Match
|
RISB0748 |
Diaphorina citri
Order: Hemiptera
|
None
|
0.01% |
15.0
|
Candidatus Erwinia haradaeae
Species-level Match
Host Order Match
|
RISB1632 |
Lachninae
Order: Hemiptera
|
None
|
0.01% |
15.0
|
Rickettsia canadensis
Species-level Match
Host Order Match
|
RISB1898 |
Bemisia tabaci
Order: Hemiptera
|
None
|
0.01% |
15.0
|
Agrobacterium tumefaciens
Species-level Match
Host Order Match
|
RISB0650 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.01% |
15.0
|
Candidatus Cardinium
Host Order Match
|
RISB0223 |
Bemisia tabaci
Order: Hemiptera
|
Cardinium could inhibit the defense response of the host plant and decrease the detoxification metabolism ability of the host whitefly, decrease the expression of detoxification metabolism genes, especially the uridine 5'-diphospho-glucuronyltransferase and P450 genes,
|
0.01% |
15.0
|
Candidatus Moranella endobia
Species-level Match
Host Order Match
|
RISB1588 |
Planococcus citri
Order: Hemiptera
|
None
|
0.00% |
15.0
|
Pantoea agglomerans
Species-level Match
Host Order Match
|
RISB2357 |
Daktulosphaira vitifoliae
Order: Hemiptera
|
None
|
0.00% |
15.0
|
Wolbachia
Host Order Match
|
RISB1444 |
Laodelphax striatellus
Order: Hemiptera
|
Wolbachia-infected host embryonic development genes revealed Ddx1 mRNAs, which is required for host viability and in the germ line, accumulated in the posterior region of 3-day-old embryos
|
0.16% |
13.9
|
Wolbachia
Host Order Match
|
RISB1539 |
Cimex lectularius
Order: Hemiptera
|
wCle provisions the bed bug with B vitamins.It is likely that because of wCle’s nutritional contribution to the bed bug, its titer increases in relation to bed bug growth and development.
|
0.16% |
13.9
|
Yersinia
Host Order Match
|
RISB0492 |
Cimex hemipterus
Order: Hemiptera
|
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
|
0.01% |
12.4
|
Wolbachia
Host Order Match
|
RISB0491 |
Cimex hemipterus
Order: Hemiptera
|
the disruption of the abundant Wolbachia could be related to the enhanced susceptibility towards the insecticides
|
0.16% |
12.4
|
Candidatus Cardinium
Host Order Match
|
RISB2290 |
Sogatella furcifera
Order: Hemiptera
|
dual infection with Cardinium and Wolbachia induced strong cytoplasmic incompatibility (CI) in a single host
|
0.01% |
12.2
|
Candidatus Cardinium
Host Order Match
|
RISB2296 |
Sogatella furcifera
Order: Hemiptera
|
could shorten the developmental time of nymphs and had no effect on the fecundity of females
|
0.01% |
11.9
|
Bacillus sp. BS98
Species-level Match
|
RISB2178 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.11% |
10.1
|
Bacillus cereus
Species-level Match
|
RISB2161 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.07% |
10.1
|
Klebsiella pneumoniae
Species-level Match
|
RISB2185 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.07% |
10.1
|
Bacillus thuringiensis
Species-level Match
|
RISB2177 |
Armadillidae
Order: Isopoda
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.05% |
10.1
|
Helicobacter
Host Order Match
|
RISB0662 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.02% |
10.0
|
Lactococcus lactis
Species-level Match
|
RISB0131 |
Ceratitis capitata
Order: Diptera
|
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
|
0.01% |
10.0
|
Candidatus Phytoplasma
Host Order Match
|
RISB1620 |
Cacopsylla pyricola
Order: Hemiptera
|
None
|
0.01% |
10.0
|
Cupriavidus
Host Order Match
|
RISB0694 |
Alydus tomentosus
Order: Hemiptera
|
None
|
0.01% |
10.0
|
Enterococcus mundtii
Species-level Match
|
RISB1733 |
Spodoptera littoralis
Order: Lepidoptera
|
actively secretes a stable class IIa bacteriocin (mundticin KS) against invading bacteria, including the opportunistic pathogens E. faecalis and E. casseliflavus, but not against other gut residents, facilitating the normal development of host gut microbiota
|
0.00% |
10.0
|
Pantoea agglomerans
Species-level Match
|
RISB2197 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.00% |
10.0
|
Paenibacillus polymyxa
Species-level Match
|
RISB2195 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.00% |
10.0
|
Listeria monocytogenes
Species-level Match
|
RISB2308 |
Drosophila melanogaster
Order: Diptera
|
L. monocytogenes infection disrupts host energy metabolism by depleting energy stores (triglycerides and glycogen) and reducing metabolic pathway activity (beta-oxidation and glycolysis). The infection affects antioxidant defense by reducing uric acid levels and alters amino acid metabolism. These metabolic changes are accompanied by melanization, potentially linked to decreased tyrosine levels.
|
0.00% |
10.0
|
Francisella tularensis
Species-level Match
|
RISB1907 |
Bombyx mori
Order: Lepidoptera
|
After infection with F. tularensis, the induction of melanization and nodulation, which are immune responses to bacterial infection, were inhibited in silkworms. Pre-inoculation of silkworms with F. tularensis enhanced the expression of antimicrobial peptides and resistance to infection by pathogenic bacteria.
|
0.00% |
10.0
|
Microbacterium
Host Order Match
|
RISB0904 |
Myzus persicae
Order: Hemiptera
|
None
|
0.00% |
10.0
|
Pseudomonas sp. REST10
Species-level Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.01% |
9.8
|
Enterococcus mundtii
Species-level Match
|
RISB0476 |
Spodoptera litura
Order: Lepidoptera
|
The ingestion of bacteria negatively affected the development and nutritional physiology of insect. The bacteria after successful establishment started degrading the gut wall and invaded the haemocoel thereby causing the death of the host.
|
0.00% |
9.8
|
Acinetobacter sp. NCu2D-2
Species-level Match
|
RISB0730 |
Curculio chinensis
Order: Coleoptera
|
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
|
0.02% |
9.7
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
0.06% |
9.4
|
Mammaliicoccus sciuri
Species-level Match
|
RISB0075 |
Bombyx mori
Order: Lepidoptera
|
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
|
0.01% |
9.0
|
Staphylococcus xylosus
Species-level Match
|
RISB2497 |
Anticarsia gemmatalis
Order: Lepidoptera
|
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
|
0.02% |
9.0
|
Streptomyces sp. T12
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.01% |
9.0
|
Acinetobacter pittii
Species-level Match
|
RISB1977 |
Blattella germanica
Order: Blattodea
|
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
|
0.02% |
8.8
|
Streptomyces sp. T12
Species-level Match
|
RISB2334 |
Sirex noctilio
Order: Hymenoptera
|
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
|
0.01% |
8.7
|
Lactococcus lactis
Species-level Match
|
RISB0967 |
Oulema melanopus
Order: Coleoptera
|
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
|
0.01% |
8.6
|
Pseudomonas sp. REST10
Species-level Match
|
RISB2224 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.01% |
8.4
|
Sphingobacterium sp. UDSM-2020
Species-level Match
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.00% |
8.3
|
Spiroplasma sp. SV19
Species-level Match
|
RISB1353 |
Cephus cinctus
Order: Hymenoptera
|
The bacterium also encoded biosynthetic pathways for essential vitamins B2, B3, and B9. We identified putative Spiroplasma virulence genes: cardiolipin and chitinase.
|
0.01% |
8.3
|
Morganella morganii
Species-level Match
|
RISB0772 |
Delia antiqua
Order: Diptera
|
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.03% |
8.3
|
Paenibacillus sp. FSL R5-0470
Species-level Match
|
RISB0774 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.02% |
8.3
|
Paenibacillus sp. FSL K6-1122
Species-level Match
|
RISB0774 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.01% |
8.3
|
Blattabacterium cuenoti
Species-level Match
|
RISB0133 |
Panesthiinae
Order: Blattodea
|
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
|
0.21% |
8.2
|
Acinetobacter sp. NCu2D-2
Species-level Match
|
RISB1500 |
Lymantria dispar
Order: Lepidoptera
|
Bacteria isolated from a host plant had a glycoside-degrading activity, which enhanced growth of the moth when larvae were fed on a toxin-containing diet
|
0.02% |
8.1
|
Morganella morganii
Species-level Match
|
RISB0008 |
Phormia regina
Order: Diptera
|
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
0.03% |
8.0
|
Citrobacter freundii
Species-level Match
|
RISB0517 |
Leptinotarsa decemlineata
Order: Coleoptera
|
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
|
0.01% |
7.9
|
Morganella morganii
Species-level Match
|
RISB1867 |
Costelytra zealandica
Order: Coleoptera
|
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
|
0.03% |
7.9
|
Spiroplasma poulsonii
Species-level Match
|
RISB1346 |
Drosophila melanogaster
Order: Diptera
|
S. poulsonii protects its host against parasitoid wasps and nematodes by the action of toxins from the family of Ribosome Inactivating Proteins
|
0.00% |
7.9
|
Escherichia coli
Species-level Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
0.06% |
7.8
|
Citrobacter freundii
Species-level Match
|
RISB0127 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
0.01% |
7.7
|
Citrobacter freundii
Species-level Match
|
RISB1221 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.01% |
7.7
|
Proteus vulgaris
Species-level Match
|
RISB0001 |
Leptinotarsa decemlineata
Order: Coleoptera
|
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
|
0.01% |
7.7
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1693 |
Plutella xylostella
Order: Lepidoptera
|
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
|
0.00% |
7.5
|
Psychrobacter sp. M13
Species-level Match
|
RISB1773 |
Calliphoridae
Order: Diptera
|
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
|
0.01% |
7.5
|
Streptomyces sp. T12
Species-level Match
|
RISB1134 |
mud dauber wasp
Order: Hymenoptera
|
secondary metabolites derived from a Streptomyces sp. displayed significant inhibitory activity against hexokinase II
|
0.01% |
7.4
|
Pantoea agglomerans
Species-level Match
|
RISB2579 |
Schistocerca gregaria
Order: Orthoptera
|
produces an antifungal and antibacterial molecule serving as antimicrobial defense against gut pathogens
|
0.00% |
7.1
|
Apilactobacillus kunkeei
Species-level Match
|
RISB0475 |
Apis mellifera
Order: Hymenoptera
|
A. kunkeei alleviated acetamiprid-induced symbiotic microbiota dysregulation and mortality in honeybees
|
0.00% |
7.1
|
Snodgrassella alvi
Species-level Match
|
RISB1423 |
Bombus spp.
Order: Hymenoptera
|
The bumble bee microbiome slightly increases survivorship when the host is exposed to selenate
|
0.02% |
6.9
|
Staphylococcus xylosus
Species-level Match
|
RISB2247 |
Anticarsia gemmatalis
Order: Lepidoptera
|
mitigation of the negative effects of proteinase inhibitors produced by the host plant
|
0.02% |
6.7
|
Blattabacterium sp. (Blaberus giganteus)
Species-level Match
|
RISB1534 |
Periplaneta fuliginosa
Order: Blattodea
|
involved in uric acid degradation, nitrogen assimilation and nutrient provisioning
|
0.00% |
6.6
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1692 |
Plutella xylostella
Order: Lepidoptera
|
participate in the synthesis of host lacking amino acids histidine and threonine
|
0.00% |
6.6
|
Klebsiella pneumoniae
Species-level Match
|
RISB2459 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
0.07% |
6.1
|
Lactiplantibacillus plantarum
Species-level Match
|
RISB0674 |
Drosophila melanogaster
Order: Diptera
|
could effectively inhibit fungal spore germinations
|
0.03% |
6.1
|
Proteus vulgaris
Species-level Match
|
RISB2460 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
0.01% |
6.0
|
Lysinibacillus fusiformis
Species-level Match
|
RISB1417 |
Psammotermes hypostoma
Order: Blattodea
|
isolates showed significant cellulolytic activity
|
0.00% |
6.0
|
Blattabacterium cuenoti
Species-level Match
|
RISB0518 |
Cryptocercus punctulatus
Order: Blattodea
|
collaborative arginine biosynthesis
|
0.21% |
5.9
|
Providencia rettgeri
Species-level Match
|
RISB1001 |
Anastrepha obliqua
Order: Diptera
|
improve the sexual competitiveness of males
|
0.01% |
5.9
|
Klebsiella pneumoniae
Species-level Match
|
RISB1994 |
Diatraea saccharalis
Order: Lepidoptera
|
possess cellulose degrading activity
|
0.07% |
5.8
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1691 |
Plutella xylostella
Order: Lepidoptera
|
activity of cellulose and hemicellulose
|
0.00% |
5.8
|
Chryseobacterium sp. Chry.R1
Species-level Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.02% |
5.6
|
Providencia rettgeri
Species-level Match
|
RISB1169 |
Bactrocera dorsalis
Order: Diptera
|
Promote the growth of larvae
|
0.01% |
5.6
|
Chryseobacterium sp. 3008163
Species-level Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.01% |
5.6
|
Chryseobacterium sp. T16E-39
Species-level Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.00% |
5.6
|
Lysinibacillus fusiformis
Species-level Match
|
RISB1066 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.00% |
5.2
|
Lactiplantibacillus plantarum
Species-level Match
|
RISB0608 |
Drosophila melanogaster
Order: Diptera
|
None
|
0.03% |
5.0
|
Snodgrassella alvi
Species-level Match
|
RISB1947 |
Apis cerana
Order: Hymenoptera
|
None
|
0.02% |
5.0
|
Lactobacillus
|
RISB1866 |
Drosophila melanogaster
Order: Diptera
|
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
|
0.02% |
5.0
|
Providencia rettgeri
Species-level Match
|
RISB1352 |
Nasonia vitripennis
Order: Hymenoptera
|
None
|
0.01% |
5.0
|
Variovorax sp. RA8
Species-level Match
|
RISB1712 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.01% |
5.0
|
Gilliamella
|
RISB0102 |
Apis mellifera
Order: Hymenoptera
|
Gilliamella apicola carries the gene for the desaturase FADS2, which is able to metabolize polyunsaturated fatty acids from pollen and synthesize endocannabinoid, a lipogenic neuroactive substance, thereby modulating reward learning and memory in honeybees.
|
0.00% |
5.0
|
Acetobacter
|
RISB1865 |
Drosophila melanogaster
Order: Diptera
|
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
|
0.00% |
5.0
|
Treponema
|
RISB2377 |
termite
Order: Blattodea
|
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
|
0.03% |
4.9
|
Microbacterium
|
RISB0084 |
Osmia cornifrons
Order: Hymenoptera
|
In O. cornifrons larvae, Microbacterium could contribute to the balance and resiliency of the gut microbiome under stress conditions. In addition, Rhodococcus was found in O. cornifrons larvae and is known for its detoxification capabilities
|
0.00% |
4.8
|
Weissella
|
RISB1982 |
Blattella germanica
Order: Blattodea
|
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
|
0.01% |
3.8
|
Xanthomonas
|
RISB0498 |
Xylocopa appendiculata
Order: Hymenoptera
|
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
|
0.00% |
3.8
|
Photorhabdus
|
RISB2532 |
Manduca sexta
Order: Lepidoptera
|
produces a small-molecule antibiotic (E)-1,3-dihydroxy-2-(isopropyl)-5-(2-phenylethenyl)benzene (ST) that also acts as an inhibitor of phenoloxidase (PO) in the insect host Manduca sexta.
|
0.00% |
3.7
|
Acetobacter
|
RISB0961 |
Drosophila melanogaster
Order: Diptera
|
The exist of Acetobacter had a balancing effect on food ingestion when carbohydrate levels were high in the warmer months, stabilizing fitness components of flies across the year.
|
0.00% |
3.6
|
Lactobacillus
|
RISB0292 |
Lymantria dispar asiatica
Order: Lepidoptera
|
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
|
0.02% |
3.4
|
Amycolatopsis
|
RISB0483 |
Trachymyrmex smithi
Order: Hymenoptera
|
inhibited the growth of Pseudonocardia symbionts under laboratory conditions. The novel analog nocamycin V from the strain was identified as the antibacterial compound
|
0.01% |
3.4
|
Candidatus Blochmanniella
|
RISB2542 |
Camponotus
Order: Hymenoptera
|
Blochmannia provide essential amino acids to its host,Camponotus floridanus, and that it may also play a role in nitrogen recycling via its functional urease
|
0.01% |
3.2
|
Amycolatopsis
|
RISB0199 |
Trachymyrmex
Order: Hymenoptera
|
produce antibiotic EC0-0501 that has strong activity against ant-associated Actinobacteria and may also play a role in bacterial competition in this niche
|
0.01% |
3.1
|
Candidatus Blochmanniella
|
RISB1827 |
Camponotus floridanus
Order: Hymenoptera
|
a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission
|
0.01% |
3.1
|
Lactobacillus
|
RISB0715 |
Spodoptera frugiperda
Order: Lepidoptera
|
Have the function of nutrient absorption, energy metabolism, the plant’s secondary metabolites degradation, insect immunity regulation, and so on
|
0.02% |
2.9
|
Photorhabdus
|
RISB2573 |
Manduca sexta
Order: Lepidoptera
|
the bacteria are symbiotic with entomopathogenic nematodes but become pathogenic on release from the nematode into the insect blood system
|
0.00% |
2.8
|
Weissella
|
RISB0641 |
Formica
Order: Hymenoptera
|
exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew
|
0.01% |
2.8
|
Candidatus Blochmanniella
|
RISB2448 |
Camponotus floridanus
Order: Hymenoptera
|
nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling
|
0.01% |
2.8
|
Bartonella
|
RISB1673 |
Apis mellifera
Order: Hymenoptera
|
a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream
|
0.01% |
2.6
|
Shewanella
|
RISB1924 |
Anopheles gambiae
Order: Diptera
|
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
|
0.02% |
2.6
|
Bacteroides
|
RISB0256 |
Leptocybe invasa
Order: Hymenoptera
|
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
|
0.05% |
2.4
|
Acetobacter
|
RISB0184 |
Drosophila melanogaster
Order: Diptera
|
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
|
0.00% |
2.3
|
Bacteroides
|
RISB0090 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.05% |
2.2
|
Bacteroides
|
RISB1183 |
Oryzaephilus surinamensis
Order: Coleoptera
|
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
|
0.05% |
2.1
|
Streptococcus
|
RISB2625 |
Galleria mellonella
Order: Lepidoptera
|
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
|
0.06% |
2.1
|
Xanthomonas
|
RISB0217 |
Xylocopa appendiculata
Order: Hymenoptera
|
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
|
0.00% |
1.9
|
Microbacterium
|
RISB2274 |
Ostrinia nubilalis
Order: Lepidoptera
|
extreme cellulolytic enzymes, at extreme (pH 13) conditions, exhibited cellulolytic properties
|
0.00% |
1.9
|
Streptococcus
|
RISB2624 |
Reticulitermes flavipes
Order: Blattodea
|
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
|
0.06% |
1.7
|
Bradyrhizobium
|
RISB0135 |
Coccinella septempunctata
Order: Coleoptera
|
be commonly found in plant roots and they all have nitrogen fixation abilities
|
0.01% |
1.6
|
Candidatus Nardonella
|
RISB2449 |
Euscepes postfasciatus
Order: Coleoptera
|
endosymbiont is involved in normal growth and development of the host weevil
|
0.00% |
1.5
|
Candidatus Nardonella
|
RISB1931 |
Lissorhoptrus oryzophilus
Order: Coleoptera
|
might be not playing critical roles in the reproduction of L. oryzophilus
|
0.00% |
1.5
|
Nostoc
|
RISB0812 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-18 oxidation pathway
|
0.01% |
1.4
|
Vibrio
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.03% |
1.4
|
Streptococcus
|
RISB2604 |
Homona magnanima
Order: Lepidoptera
|
influence the growth of Bacillus thuringiensis in the larvae
|
0.06% |
1.3
|
Photorhabdus
|
RISB0532 |
Drosophila melanogaster
Order: Diptera
|
produces toxin complex (Tc) toxins as major virulence factors
|
0.00% |
1.2
|
Paraclostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.02% |
1.1
|
Cronobacter
|
RISB0247 |
Tenebrio molitor
Order: Coleoptera
|
may be indirectly involved in the digestion of PE
|
0.01% |
1.0
|
Candidatus Nardonella
|
RISB1668 |
Multiple species
Order: Coleoptera
|
Possibly tyrosine precursor provisioning
|
0.00% |
0.8
|
Priestia
|
RISB0839 |
Helicoverpa armigera
Order: Lepidoptera
|
producing amylase
|
0.02% |
0.4
|
Gilliamella
|
RISB0620 |
Spodoptera frugiperda
Order: Lepidoptera
|
degrade amygdalin
|
0.00% |
0.3
|
Bombilactobacillus
|
RISB0617 |
Spodoptera frugiperda
Order: Lepidoptera
|
degrade amygdalin
|
0.00% |
0.3
|
Peribacillus
|
RISB1877 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.02% |
0.3
|
Neisseria
|
RISB0512 |
Plutella xylostella
Order: Lepidoptera
|
None
|
0.05% |
0.1
|
Treponema
|
RISB0169 |
Reticulitermes flaviceps
Order: Blattodea
|
None
|
0.03% |
0.0
|
Legionella
|
RISB1687 |
Polyplax serrata
Order: Phthiraptera
|
None
|
0.03% |
0.0
|
Yersinia
|
RISB0407 |
Anaphes nitens
Order: Hymenoptera
|
None
|
0.01% |
0.0
|
Weissella
|
RISB1566 |
Liometopum apiculatum
Order: Hymenoptera
|
None
|
0.01% |
0.0
|
Gilliamella
|
RISB1945 |
Apis cerana
Order: Hymenoptera
|
None
|
0.00% |
0.0
|
Myroides
|
RISB0626 |
Musca altica
Order: Diptera
|
None
|
0.00% |
0.0
|
Vagococcus
|
RISB0042 |
Aldrichina grahami
Order: Diptera
|
None
|
0.00% |
0.0
|
Candidatus Arthromitus
|
RISB2613 |
Multiple species
Order: None
|
None
|
0.00% |
0.0
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.