SRR22520363 - Monochamus alternatus

Basic Information

Run: SRR22520363

Assay Type: WGS

Bioproject: PRJNA907216

Biosample: SAMN31956298

Bytes: 1691277031

Center Name: FUJIAN AGRICULTURE AND FORESTRY UNIVERSITY

Sequencing Information

Instrument: Illumina NovaSeq 6000

Library Layout: PAIRED

Library Selection: RANDOM

Platform: ILLUMINA

Geographic Information

Country: China

Continent: Asia

Location Name: China: Fujian1

Latitude/Longitude: -

Sample Information

Host: Monochamus alternatus

Isolation: -

Biosample Model: Metagenome or environmental

Collection Date: 2022-10

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Pantoea sp. BRR-3P
RISB0736
Psylliodes chrysocephala
Order: Coleoptera
Laboratory-reared and field-collected P. chrysocephala all contained three core genera Pantoea, Acinetobacter and Pseudomonas, and reintroduction of Pantoea sp. Pc8 in antibiotic-fed beetles restored isothiocyanate degradation ability in vivo (by 16S rRNA gene sequencing and LC-MS)
15.75%
35.8
Serratia marcescens
RISB1295
Nicrophorus vespilloides
Order: Coleoptera
producing antibacterial compound Serrawettin W2, which has antibacterial and nematode-inhibiting effects
18.45%
35.5
Serratia marcescens
RISB0365
Pagiophloeus tsushimanus
Order: Coleoptera
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
18.45%
35.2
Serratia marcescens
RISB1158
Nicrophorus vespilloides
Order: Coleoptera
produces an antibacterial cyclic lipopeptide called serrawettin W2
18.45%
34.8
Pantoea sp. BRR-3P
RISB0814
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-14 oxidation pathway
15.75%
32.2
Pantoea sp. BRR-3P
RISB0118
Nezara viridula
Order: Hemiptera
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies;transmitted bacteria impacted plant chemical defenses and were able to degrade toxic plant metabolites, aiding the shield bug in its nutrition
15.75%
25.8
Enterobacter hormaechei
RISB1331
Zeugodacus cucurbitae
Order: Diptera
None
18.04%
23.0
Pseudomonas sp. CIP-10
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.05%
19.9
Rahnella aquatilis
RISB1623
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.01%
19.8
Klebsiella oxytoca
RISB1506
Cleonus trivittatus
Order: Coleoptera
Antibiotic-treated larvae suffered growth retardation on a diet containing plant extract or swainsonine. Gut bacteria showed toxin-degradation activities in vitro
1.07%
19.3
Lactococcus lactis
RISB0967
Oulema melanopus
Order: Coleoptera
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
0.01%
18.6
Raoultella sp. XY-1
RISB2226
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.16%
18.5
Raoultella sp. DY2415
RISB2226
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.14%
18.5
Enterobacter sp. AN-K1
RISB2221
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.13%
18.5
Raoultella sp. X13
RISB2226
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.13%
18.5
Enterobacter sp. DTU_2021_1002640_1_SI_PRY_ASU_LCPMC_013
RISB2221
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.12%
18.5
Pseudomonas sp. CIP-10
RISB2224
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.05%
18.4
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.60%
18.3
Citrobacter freundii
RISB0517
Leptinotarsa decemlineata
Order: Coleoptera
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
0.18%
18.1
Sodalis praecaptivus
RISB1718
Sitophilus zeamais
Order: Coleoptera
we investigated the role of a quorum sensing(QS ) system in S. praecaptivus and found that it negatively regulates a potent insect-killing phenotype
0.01%
18.0
Citrobacter freundii complex sp. CFNIH2
RISB0517
Leptinotarsa decemlineata
Order: Coleoptera
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
0.01%
17.9
Citrobacter freundii
RISB0127
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.18%
17.9
Morganella morganii
RISB1867
Costelytra zealandica
Order: Coleoptera
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
0.01%
17.9
Proteus vulgaris
RISB0001
Leptinotarsa decemlineata
Order: Coleoptera
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
0.00%
17.7
Bacillus sp. N5-665
RISB1645
Osphranteria coerulescens
Order: Coleoptera
The isolate has cellulolytic activity and can hydrolyze CMC, avicel, cellulose and sawdust with broad temperature and pH stability
0.00%
17.6
Enterococcus faecalis
RISB0497
Cryptolestes ferrugineus
Order: Coleoptera
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
0.00%
17.6
Enterococcus faecalis
RISB2042
Harpalus pensylvanicus
Order: Coleoptera
E. faecalis facilitate seed consumption by H. pensylvanicus, possibly by contributing digestive enzymes to their host
0.00%
17.3
Rahnella aquatilis
RISB1800
Dendroctonus valens
Order: Coleoptera
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth
0.01%
17.2
Rahnella aquatilis
RISB0741
Dendroctonus ponderosae
Order: Coleoptera
R. aquatilis decreased (−)-α-pinene (38%) and (+)-α-pinene (46%) by 40% and 45% (by GC-MS), respectively
0.01%
17.1
Lactococcus lactis
RISB1430
Rhynchophorus ferrugineus
Order: Coleoptera
promote the development and body mass gain of RPW larvae by improving their nutrition metabolism
0.01%
16.9
Erwinia sp. HDF1-3R
RISB0808
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-12 oxidation pathway
0.41%
16.8
Pseudomonas aeruginosa
RISB0364
Pagiophloeus tsushimanus
Order: Coleoptera
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
0.01%
16.8
Morganella morganii
RISB1548
Costelytra zealandica
Order: Coleoptera
symbionts residing in the colleterial glands produce phenol 1 as the female sex pheromone
0.01%
16.8
Morganella morganii
RISB1868
Costelytra zealandica
Order: Coleoptera
produces phenol as the sex pheromone of the host from tyrosine in the colleterial gland
0.01%
16.8
Erwinia sp. QL-Z3
RISB0808
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-12 oxidation pathway
0.24%
16.7
Streptomyces sp. T12
RISB0777
Copris tripartitus
Order: Coleoptera
contribute brood ball hygiene by inhibiting fungal parasites in the environment
0.06%
16.6
Streptomyces sp. WAC00303
RISB0777
Copris tripartitus
Order: Coleoptera
contribute brood ball hygiene by inhibiting fungal parasites in the environment
0.02%
16.6
Erwinia sp. E602
RISB0808
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-12 oxidation pathway
0.17%
16.6
Klebsiella sp. ZJOU C1
RISB0809
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-17 oxidation pathway
0.08%
16.5
Kosakonia sp. BYX6
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.08%
16.5
Kosakonia sp. ML.JS2a
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.07%
16.5
Klebsiella sp. WP8-S18-ESBL-06
RISB0809
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-17 oxidation pathway
0.04%
16.5
Kosakonia sp. SMBL-WEM22
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.03%
16.5
Enterococcus faecalis
RISB0374
Tribolium castaneum
Order: Coleoptera
modulates host phosphine resistance by interfering with the redox system
0.00%
16.4
Bacillus sp. N5-665
RISB0805
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-8 oxidation pathway
0.00%
16.4
Stenotrophomonas maltophilia
RISB0139
Tenebrio molitor
Order: Coleoptera
correlated with polyvinyl chloride PVC degradation
0.05%
16.1
Bacillus cereus
RISB1056
Oryctes rhinoceros
Order: Coleoptera
provide symbiotic digestive functions to Oryctes
0.07%
16.0
Wolbachia pipientis
RISB2621
Tribolium confusum
Order: Coleoptera
induces cytoplasmic incompatibility
0.13%
15.8
Lactococcus lactis
RISB1065
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.01%
15.2
Staphylococcus epidermidis
RISB1070
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.00%
15.2
Spiroplasma
RISB0343
Harmonia axyridis
Order: Coleoptera
female ladybirds co-infected with Hesperomyces harmoniae and Spiroplasma had a significantly lower fecundity and hatchability compared to females with only one or no symbiont
0.01%
13.5
Spiroplasma
RISB1483
Brachinus elongatulus
Order: Coleoptera
may manipulate host reproduction (e.g., cause male-killing) or provide resistance to nematodes and/or parasitoid wasps
0.01%
12.4
Bacteroides
RISB1183
Oryzaephilus surinamensis
Order: Coleoptera
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
0.02%
12.1
Rickettsia
RISB1279
Ips sp.
Order: Coleoptera
inducing cytoplasmic incompatibility, resulting in reproductive distortions and hence
0.01%
11.7
Rickettsia
RISB0970
Oulema melanopus
Order: Coleoptera
may be associated with insect reproduction and maturation of their sexual organs
0.01%
11.6
Rickettsia
RISB1954
Sitona obsoletus
Order: Coleoptera
potential defensive properties against he parasitoid Microctonus aethiopoides
0.01%
11.6
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.09%
11.4
Cronobacter
RISB0247
Tenebrio molitor
Order: Coleoptera
may be indirectly involved in the digestion of PE
0.12%
11.1
Trabulsiella
RISB1685
Melolontha hippocastani
Order: Coleoptera
Involved in cellulose degradation
0.04%
10.7
Spiroplasma
RISB0250
Tenebrio molitor
Order: Coleoptera
associated with PE biodegradation
0.01%
10.7
Aeromonas
RISB1145
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.01%
10.4
Kluyvera
RISB1064
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.14%
10.4
Wolbachia pipientis
RISB0766
Aedes fluviatilis
Order: Diptera
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
0.13%
10.1
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
0.02%
10.0
Paenibacillus polymyxa
RISB2195
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.01%
10.0
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
0.60%
9.9
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
0.02%
9.8
Clostridium sp. DL-VIII
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.01%
9.2
Clostridium sp. OS1-26
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.00%
9.2
Stenotrophomonas maltophilia
RISB1122
Bombyx mori
Order: Lepidoptera
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
0.05%
9.1
Streptomyces sp. T12
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.06%
9.0
Mammaliicoccus sciuri
RISB0075
Bombyx mori
Order: Lepidoptera
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
0.00%
9.0
Acinetobacter pittii
RISB1977
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
0.12%
8.9
Buchnera aphidicola
RISB0685
Acyrthosiphon pisum
Order: Hemiptera
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
0.02%
8.8
Burkholderia sp. FERM BP-3421
RISB1501
Riptortus pedestris
Order: Hemiptera
Susceptible insects became resistant via acquisition of pesticide-degrading symbionts from pesticide-sprayed soil. This association could occur only after two-time-spraying on soil
0.00%
8.6
Sodalis praecaptivus
RISB0122
Nezara viridula
Order: Hemiptera
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies.
0.01%
8.6
Burkholderia sp. FERM BP-3421
RISB2070
Riptortus pedestris
Order: Hemiptera
Burkholderia sp. did not affect the development of the host insect but the first oviposition time was in approximately 60% compared with a control group
0.00%
8.0
Blattabacterium cuenoti
RISB0133
Panesthiinae
Order: Blattodea
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
0.01%
8.0
Stenotrophomonas maltophilia
RISB1227
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.05%
7.8
Wolbachia pipientis
RISB1515
Drosophila melanogaster
Order: Diptera
increases the recombination rate observed across two genomic intervals and increases the efficacy of natural selection in hosts
0.13%
7.7
Psychrobacter sp. LV10R520-6
RISB1773
Calliphoridae
Order: Diptera
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
0.00%
7.4
Leclercia adecarboxylata
RISB1757
Spodoptera frugiperda
Order: Lepidoptera
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
0.14%
7.0
Burkholderia sp. FERM BP-3421
RISB1502
Cavelerius saccharivorus
Order: Hemiptera
Gut symbionts showed a pesticide-degrading activity in vivo and in vitro
0.00%
6.4
Escherichia coli
RISB2120
Galleria mellonella
Order: Lepidoptera
mediate trans-generational immune priming
0.60%
6.4
Leclercia adecarboxylata
RISB1758
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.14%
6.3
Proteus vulgaris
RISB2460
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
0.00%
6.0
Providencia rettgeri
RISB1001
Anastrepha obliqua
Order: Diptera
improve the sexual competitiveness of males
0.00%
5.9
Cedecea lapagei
RISB1570
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.02%
5.7
Blattabacterium cuenoti
RISB0518
Cryptocercus punctulatus
Order: Blattodea
collaborative arginine biosynthesis
0.01%
5.7
Providencia alcalifaciens
RISB1168
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
0.00%
5.6
Blattabacterium cuenoti
RISB0093
Blattella germanica
Order: Blattodea
obligate endosymbiont
0.01%
5.4
Arsenophonus nasoniae
RISB0428
Nasonia vitripennis
Order: Hymenoptera
male killing
0.00%
5.2
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
0.21%
5.2
Trabulsiella
RISB2201
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.04%
5.0
Pseudocitrobacter corydidari
RISB0696
Corydidarum magnifica
Order: Blattodea
None
0.03%
5.0
Cedecea lapagei
RISB0504
Plutella xylostella
Order: Lepidoptera
None
0.02%
5.0
Francisella
RISB1907
Bombyx mori
Order: Lepidoptera
After infection with F. tularensis, the induction of melanization and nodulation, which are immune responses to bacterial infection, were inhibited in silkworms. Pre-inoculation of silkworms with F. tularensis enhanced the expression of antimicrobial peptides and resistance to infection by pathogenic bacteria.
0.02%
5.0
Yersinia massiliensis
RISB0407
Anaphes nitens
Order: Hymenoptera
None
0.01%
5.0
Pectobacterium carotovorum
RISB1772
Muscidae
Order: Diptera
None
0.01%
5.0
Providencia rettgeri
RISB1352
Nasonia vitripennis
Order: Hymenoptera
None
0.00%
5.0
Arsenophonus nasoniae
RISB0366
Pachycrepoideus vindemmiae
Order: Hymenoptera
None
0.00%
5.0
Candidatus Karelsulcia muelleri
RISB1591
Philaenus spumarius
Order: Hemiptera
None
0.00%
5.0
Xanthomonas
RISB0498
Xylocopa appendiculata
Order: Hymenoptera
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
0.01%
3.8
Symbiopectobacterium
RISB1889
Pseudococcus longispinus
Order: Hemiptera
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
0.01%
3.4
Yokenella
RISB1492
Nezara viridula
Order: Hemiptera
help stinkbugs to feed on soybean developing seeds in spite of its chemical defenses by degrading isoflavonoids and deactivate soybean protease inhibitors
0.02%
3.1
Shewanella
RISB1924
Anopheles gambiae
Order: Diptera
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
0.00%
2.5
Bacteroides
RISB0256
Leptocybe invasa
Order: Hymenoptera
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
0.02%
2.3
Bacteroides
RISB0090
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.02%
2.1
Nitrosospira
RISB0869
Sirex noctilio
Order: Hymenoptera
might be involved in degrading organic matter and fixing nitrogen occurred exclusively in the larval gut
0.00%
2.1
Xanthomonas
RISB0217
Xylocopa appendiculata
Order: Hymenoptera
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
0.01%
2.0
Xenorhabdus
RISB1372
Spodoptera frugiperda
Order: Lepidoptera
the products of the symbiont gene cluster inhibit Spodoptera frugiperda phenoloxidase activity
0.00%
1.9
Xenorhabdus
RISB2270
Acyrthosiphon pisum
Order: Hemiptera
have the gene PIN1 encoding the protease inhibitor protein against aphids
0.00%
1.5
Dickeya
RISB1086
Rhodnius prolixus
Order: Hemiptera
supply enzymatic biosynthesis of B-complex vitamins
0.06%
1.1
Paraclostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.01%
1.1
Aeromonas
RISB2456
Bombyx mori
Order: Lepidoptera
able to utilize the CMcellulose and xylan
0.01%
0.8
Nocardioides
RISB1914
Hyles euphorbiae
Order: Lepidoptera
able to degrade alkaloids and/or latex
0.02%
0.8
Aeromonas
RISB2086
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.01%
0.6
Chryseobacterium
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.01%
0.6
Priestia
RISB0839
Helicoverpa armigera
Order: Lepidoptera
producing amylase
0.01%
0.4
Chryseobacterium
RISB1874
Aedes aegypti
Order: Diptera
gut microbiome
0.01%
0.3
Achromobacter
RISB1869
Aedes aegypti
Order: Diptera
gut microbiome
0.00%
0.3
Neisseria
RISB0512
Plutella xylostella
Order: Lepidoptera
None
0.06%
0.1
Flavobacterium
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
0.05%
0.1
Gibbsiella
RISB1320
Vespa mandarinia
Order: Hymenoptera
None
0.02%
0.0
Cupriavidus
RISB0694
Alydus tomentosus
Order: Hemiptera
None
0.02%
0.0
Helicobacter
RISB0662
Melanaphis bambusae
Order: Hemiptera
None
0.02%
0.0
Chryseobacterium
RISB0015
Aedes aegypti
Order: Diptera
None
0.01%
0.0
Achromobacter
RISB0383
Aphis gossypii
Order: Hemiptera
None
0.00%
0.0
Lonsdalea
RISB1321
Vespa mandarinia
Order: Hymenoptera
None
0.00%
0.0
Legionella
RISB1687
Polyplax serrata
Order: Phthiraptera
None
0.00%
0.0

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR22520363
1.6 GB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table