SRR21195467 - Aedes albopictus
Basic Information
Run: SRR21195467
Assay Type: WGS
Bioproject: PRJNA873190
Biosample: SAMN30491016
Bytes: 22870333
Center Name: PEST CONTROL DEPARTMENT
Sequencing Information
Instrument: Illumina HiSeq 2500
Library Layout: PAIRED
Library Selection: PCR
Platform: ILLUMINA
Geographic Information
Country: China
Continent: Asia
Location Name: China:Beijing
Latitude/Longitude: 39.54 N 116.25 E
Sample Information
Host: Aedes albopictus
Isolation: Sequence of the internal microbiota in Aedes albopictus after exposure to -cypermethrin
Biosample Model: Metagenome or environmental
Collection Date: 2022-05-18
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Wolbachia pipientis
Species-level Match
Host Order Match
Host Species Match
|
RISB2617 |
Aedes albopictus
Order: Diptera
|
induces cytoplasmic incompatibility
|
19.00% |
54.7
|
Wolbachia pipientis
Species-level Match
Host Order Match
Host Species Match
|
RISB1965 |
Aedes albopictus
Order: Diptera
|
None
|
19.00% |
54.0
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB1769 |
Calliphoridae
Order: Diptera
|
None
|
29.11% |
44.1
|
Wolbachia pipientis
Species-level Match
Host Order Match
|
RISB0766 |
Aedes fluviatilis
Order: Diptera
|
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
|
19.00% |
39.0
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
29.11% |
38.4
|
Escherichia coli
Species-level Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
29.11% |
36.8
|
Citrobacter
Host Order Match
|
RISB1503 |
Bactrocera dorsalis
Order: Diptera
|
Pesticide-degrading bacteria were frequently detected from pesticide-resistant insects. Susceptible insects became resistant after inoculation of the pesticide-degrading symbiont
|
0.17% |
13.7
|
Citrobacter
Host Order Match
|
RISB0192 |
Hermetia illucens
Order: Diptera
|
can directly promote the expression of two gene families related to intestinal protein metabolism: Hitryp serine protease trypsin family and Himtp metallopeptidase family
|
0.17% |
13.6
|
Citrobacter
Host Order Match
|
RISB1221 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.17% |
12.9
|
Chryseobacterium
Host Order Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.63% |
11.2
|
Chryseobacterium
Host Order Match
|
RISB1874 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.63% |
10.9
|
Chryseobacterium
Host Order Match
|
RISB0015 |
Aedes aegypti
Order: Diptera
|
None
|
0.63% |
10.6
|
Xanthomonas
|
RISB0498 |
Xylocopa appendiculata
Order: Hymenoptera
|
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
|
0.34% |
4.1
|
Xanthomonas
|
RISB0217 |
Xylocopa appendiculata
Order: Hymenoptera
|
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
|
0.34% |
2.3
|
Bradyrhizobium
|
RISB0135 |
Coccinella septempunctata
Order: Coleoptera
|
be commonly found in plant roots and they all have nitrogen fixation abilities
|
0.20% |
1.8
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.