SRR21047531 - Lepoptena cervi
Basic Information
Run: SRR21047531
Assay Type: WGS
Bioproject: PRJNA869538
Biosample: SAMN30309423
Bytes: 12290213267
Center Name: FEDERAL RESEARCH AND CLINICAL CENTRE OF PHYSICAL-CHEMICAL MEDICINE
Sequencing Information
Instrument: MGISEQ-2000RS
Library Layout: PAIRED
Library Selection: RANDOM
Platform: BGISEQ
Geographic Information
Country: Russia
Continent: Europe
Location Name: Russia: Moscow region\, Mozhaysky district
Latitude/Longitude: 55.475556 N 35.857667 E
Sample Information
Host: Lepoptena cervi
Isolation: internal organs of the thorax and abdomen of female Deer keds
Biosample Model: Metagenome or environmental
Collection Date: 2021-09-01
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
83.99% |
93.3
|
Escherichia coli
Species-level Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
83.99% |
91.7
|
Escherichia coli
Species-level Match
|
RISB2120 |
Galleria mellonella
Order: Lepidoptera
|
mediate trans-generational immune priming
|
83.99% |
89.8
|
Bacillus thuringiensis
Species-level Match
|
RISB2177 |
Armadillidae
Order: Isopoda
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.84% |
10.8
|
Bacillus thuringiensis
Species-level Match
|
RISB0109 |
Tuta absoluta
Order: Lepidoptera
|
Individual exposure of B. thuringiensis isolates to P. absoluta revealed high susceptibility of the pest and could potentially be used to develop effective, safe and affordable microbial pesticides for the management of P. absoluta.
|
0.84% |
10.5
|
Bacillus cereus
Species-level Match
|
RISB2161 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.07% |
10.1
|
Klebsiella pneumoniae
Species-level Match
|
RISB2185 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.02% |
10.0
|
Buchnera aphidicola
Species-level Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
0.01% |
10.0
|
Stenotrophomonas sp. 610A2
Species-level Match
|
RISB0325 |
Pharaxonotha floridana
Order: Coleoptera
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores
|
0.01% |
10.0
|
Staphylococcus gallinarum
Species-level Match
|
RISB0945 |
Callosobruchus maculatus
Order: Coleoptera
|
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
|
0.00% |
10.0
|
Paenibacillus polymyxa
Species-level Match
|
RISB2195 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.00% |
10.0
|
Pseudomonas sp. BJP69
Species-level Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.07% |
9.9
|
Pseudomonas sp. NY11382
Species-level Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.02% |
9.8
|
Pseudomonas sp. CCC3.1
Species-level Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.01% |
9.8
|
Buchnera aphidicola
Species-level Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
0.01% |
9.8
|
Acinetobacter sp. TR3
Species-level Match
|
RISB0730 |
Curculio chinensis
Order: Coleoptera
|
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
|
0.01% |
9.7
|
Lactococcus sp. NH2-7C
Species-level Match
|
RISB2305 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.00% |
9.2
|
Clostridium sp. JN-1
Species-level Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.00% |
9.2
|
Staphylococcus xylosus
Species-level Match
|
RISB2497 |
Anticarsia gemmatalis
Order: Lepidoptera
|
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
|
0.21% |
9.2
|
Mammaliicoccus sciuri
Species-level Match
|
RISB0075 |
Bombyx mori
Order: Lepidoptera
|
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
|
0.01% |
9.0
|
Streptomyces sp. WZ-12
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.00% |
9.0
|
Acinetobacter sp. TR3
Species-level Match
|
RISB1978 |
Blattella germanica
Order: Blattodea
|
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
|
0.01% |
8.8
|
Buchnera aphidicola
Species-level Match
|
RISB0685 |
Acyrthosiphon pisum
Order: Hemiptera
|
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
|
0.01% |
8.8
|
Streptomyces sp. WZ-12
Species-level Match
|
RISB2334 |
Sirex noctilio
Order: Hymenoptera
|
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
|
0.00% |
8.7
|
Sphingobacterium sp. R2
Species-level Match
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.03% |
8.4
|
Stenotrophomonas sp. 610A2
Species-level Match
|
RISB2228 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.01% |
8.4
|
Sphingobacterium sp. ML3W
Species-level Match
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.00% |
8.3
|
Morganella morganii
Species-level Match
|
RISB0772 |
Delia antiqua
Order: Diptera
|
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.00% |
8.3
|
Paenibacillus sp. G2S3
Species-level Match
|
RISB0774 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.01% |
8.3
|
Paenibacillus sp. SYP-B4298
Species-level Match
|
RISB0774 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.00% |
8.3
|
Acinetobacter sp. TR3
Species-level Match
|
RISB1500 |
Lymantria dispar
Order: Lepidoptera
|
Bacteria isolated from a host plant had a glycoside-degrading activity, which enhanced growth of the moth when larvae were fed on a toxin-containing diet
|
0.01% |
8.1
|
Blattabacterium cuenoti
Species-level Match
|
RISB0133 |
Panesthiinae
Order: Blattodea
|
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
|
0.06% |
8.0
|
Morganella morganii
Species-level Match
|
RISB0008 |
Phormia regina
Order: Diptera
|
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
0.00% |
8.0
|
Citrobacter freundii
Species-level Match
|
RISB0517 |
Leptinotarsa decemlineata
Order: Coleoptera
|
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
|
0.00% |
7.9
|
Morganella morganii
Species-level Match
|
RISB1867 |
Costelytra zealandica
Order: Coleoptera
|
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
|
0.00% |
7.8
|
Citrobacter freundii
Species-level Match
|
RISB0127 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
0.00% |
7.7
|
Citrobacter freundii
Species-level Match
|
RISB1221 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.00% |
7.7
|
Enterococcus faecalis
Species-level Match
|
RISB0497 |
Cryptolestes ferrugineus
Order: Coleoptera
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
|
0.01% |
7.6
|
Enterococcus faecalis
Species-level Match
|
RISB1411 |
Bactrocera dorsalis
Order: Diptera
|
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
|
0.01% |
7.6
|
Staphylococcus gallinarum
Species-level Match
|
RISB0946 |
Callosobruchus maculatus
Order: Coleoptera
|
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine
|
0.00% |
7.4
|
Enterococcus faecalis
Species-level Match
|
RISB2042 |
Harpalus pensylvanicus
Order: Coleoptera
|
E. faecalis facilitate seed consumption by H. pensylvanicus, possibly by contributing digestive enzymes to their host
|
0.01% |
7.4
|
Streptomyces sp. WZ-12
Species-level Match
|
RISB1134 |
mud dauber wasp
Order: Hymenoptera
|
secondary metabolites derived from a Streptomyces sp. displayed significant inhibitory activity against hexokinase II
|
0.00% |
7.3
|
Stenotrophomonas sp. 610A2
Species-level Match
|
RISB0816 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-20 oxidation pathway
|
0.01% |
6.4
|
Lactococcus sp. NH2-7C
Species-level Match
|
RISB0811 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-13 oxidation pathway
|
0.00% |
6.4
|
Neisseria
|
RISB0512 |
Plutella xylostella
Order: Lepidoptera
|
None
|
6.32% |
6.3
|
Streptococcus
|
RISB2625 |
Galleria mellonella
Order: Lepidoptera
|
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
|
4.27% |
6.3
|
Klebsiella pneumoniae
Species-level Match
|
RISB2459 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
0.02% |
6.0
|
Lactiplantibacillus plantarum
Species-level Match
|
RISB0674 |
Drosophila melanogaster
Order: Diptera
|
could effectively inhibit fungal spore germinations
|
0.00% |
6.0
|
Streptococcus
|
RISB2624 |
Reticulitermes flavipes
Order: Blattodea
|
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
|
4.27% |
5.9
|
Blattabacterium cuenoti
Species-level Match
|
RISB0518 |
Cryptocercus punctulatus
Order: Blattodea
|
collaborative arginine biosynthesis
|
0.06% |
5.8
|
Klebsiella pneumoniae
Species-level Match
|
RISB1994 |
Diatraea saccharalis
Order: Lepidoptera
|
possess cellulose degrading activity
|
0.02% |
5.7
|
Microbacterium oxydans
Species-level Match
|
RISB0878 |
Galleria mellonella
Order: Lepidoptera
|
biodegradation of Polyethylene
|
0.00% |
5.6
|
Chryseobacterium sp. G0201
Species-level Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.01% |
5.6
|
Blattabacterium cuenoti
Species-level Match
|
RISB0093 |
Blattella germanica
Order: Blattodea
|
obligate endosymbiont
|
0.06% |
5.5
|
Streptococcus
|
RISB2604 |
Homona magnanima
Order: Lepidoptera
|
influence the growth of Bacillus thuringiensis in the larvae
|
4.27% |
5.5
|
Rickettsia
|
RISB0940 |
Bemisia tabaci
Order: Hemiptera
|
Rickettsia can be transmitted into plants via whitefly feeding and remain alive within the cotton plants for at least 2 weeks.Then the persistence of Rickettsia and its induced defense responses in cotton plants can increase the fitness of whitefly and, by this, Rickettsia may increase its infection and spread within its whitefly host
|
0.15% |
5.2
|
Flavobacterium johnsoniae
Species-level Match
|
RISB0659 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.02% |
5.0
|
Agrobacterium tumefaciens
Species-level Match
|
RISB0650 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.01% |
5.0
|
Wolbachia
|
RISB0190 |
Encarsia formosa
Order: Hymenoptera
|
Wolbachia's parthenogenesis-induction feminization factor (piff) gene modulates sex determination in Encarsia formosa by regulating doublesex (dsx) expression. When Wolbachia is removed, female-specific dsx decreases while male-specific dsx increases, resulting in haploid male offspring
|
0.01% |
5.0
|
Lactiplantibacillus plantarum
Species-level Match
|
RISB0608 |
Drosophila melanogaster
Order: Diptera
|
None
|
0.00% |
5.0
|
Salmonella enterica
Species-level Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
0.00% |
5.0
|
Erwinia
|
RISB1777 |
Bactrocera oleae
Order: Diptera
|
a number of genes encoding detoxification and digestive enzymes, indicating a potential association with the ability of B. oleae to cope with green olives. In addition, a number of biological processes seem to be activated in Ca. E. dacicola during the development of larvae in olives, with the most notable being the activation of amino-acid metabolism.
|
0.00% |
5.0
|
Gilliamella
|
RISB0102 |
Apis mellifera
Order: Hymenoptera
|
Gilliamella apicola carries the gene for the desaturase FADS2, which is able to metabolize polyunsaturated fatty acids from pollen and synthesize endocannabinoid, a lipogenic neuroactive substance, thereby modulating reward learning and memory in honeybees.
|
0.00% |
5.0
|
Burkholderia
|
RISB1172 |
Lagria villosa
Order: Coleoptera
|
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
|
0.00% |
5.0
|
Bifidobacterium
|
RISB0174 |
Apis mellifera
Order: Hymenoptera
|
Bifidobacterium provides complementary demethylation service to promote Gilliamella growth on methylated homogalacturonan, an enriched polysaccharide of pectin. In exchange, Gilliamella shares digestive products with Bifidobacterium, through which a positive interaction is established
|
0.00% |
5.0
|
Spiroplasma
|
RISB1796 |
Drosophila neotestacea
Order: Diptera
|
when parasitized by the nematode Howardula aoronymphium, Spiroplasma encodes a ribosome-inactivating protein (RIP) related to Shiga-like toxins from enterohemorrhagic Escherichia coli and that Howardula ribosomal RNA (rRNA) is depurinated during Spiroplasma-mediated protection of D. neotestacea
|
0.00% |
5.0
|
Treponema
|
RISB2377 |
termite
Order: Blattodea
|
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
|
0.00% |
4.9
|
Wolbachia
|
RISB1584 |
Nasonia vitripennis
Order: Hymenoptera
|
there were few significant changes in immune or reproductive proteins between samples with and without Wolbachia infection. Differentially expressed proteins were involved in the binding process, catalytic activity, and the metabolic process
|
0.01% |
4.8
|
Wolbachia
|
RISB0779 |
Drosophila melanogaster
Order: Diptera
|
Wolbachia infection affects differential gene expression in Drosophila testis.Genes involved in carbohydrate metabolism, lysosomal degradation, proteolysis, lipid metabolism, and immune response were upregulated in the presence of Wolbachia
|
0.01% |
4.8
|
Rickettsia
|
RISB0699 |
Bemisia tabaci
Order: Hemiptera
|
Rickettsia infection improved its host’s fitness by enhancing its resistance towards insecticides (imidacloprid and spirotetramat), entomopathogenic fungus (Akanthomyces attenuatus) and parasitoid (Encarsia formosa)
|
0.15% |
4.5
|
Burkholderia
|
RISB1729 |
Lagria hirta
Order: Coleoptera
|
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
|
0.00% |
4.3
|
Burkholderia
|
RISB0402 |
Riptortus pedestris
Order: Hemiptera
|
symbiont colonization induces the development of the midgut crypts via finely regulating the enterocyte cell cycles, enabling it to stably and abundantly colonize the generated spacious crypts of the bean bug host
|
0.00% |
4.3
|
Spiroplasma
|
RISB1926 |
Anopheles gambiae
Order: Diptera
|
may have reproductive interactions with their mosquito hosts,either providing an indirect fitness advantage to females by inducing male killing or by directly protecting the host against natural pathogens
|
0.00% |
4.1
|
Rickettsia
|
RISB0132 |
Bemisia tabaci MED
Order: Hemiptera
|
Rickettsia infection resulted in increased whitefly fecundity and female bias by stimulating juvenile hormone synthesis. The production of more female progeny facilitates Rickettsia transmission
|
0.15% |
4.0
|
Weissella
|
RISB1982 |
Blattella germanica
Order: Blattodea
|
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
|
0.01% |
3.8
|
Xanthomonas
|
RISB0498 |
Xylocopa appendiculata
Order: Hymenoptera
|
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
|
0.00% |
3.8
|
Spiroplasma
|
RISB1737 |
Acyrthosiphon pisum
Order: Hemiptera
|
injected two Spiroplasma isolates into secondary symbiont-free aphids and found that wasps showed a significant preference for plants previously attacked by aphids without this symbiont
|
0.00% |
3.7
|
Erwinia
|
RISB1851 |
Graphosoma Lineatum
Order: Hemiptera
|
it seems that the symbiotic bacterium of G. lineatum might have vital role in provision of essential nutrients necessary to support host survival, development and fecundity.
|
0.00% |
3.5
|
Bifidobacterium
|
RISB0616 |
Spodoptera frugiperda
Order: Lepidoptera
|
Strain wkB204 grew in the presence of amygdalin as the sole carbon source, suggesting that this strain degrades amygdalin and is not susceptible to the potential byproducts
|
0.00% |
3.4
|
Amycolatopsis
|
RISB0483 |
Trachymyrmex smithi
Order: Hymenoptera
|
inhibited the growth of Pseudonocardia symbionts under laboratory conditions. The novel analog nocamycin V from the strain was identified as the antibacterial compound
|
0.00% |
3.3
|
Candidatus Blochmanniella
|
RISB2542 |
Camponotus
Order: Hymenoptera
|
Blochmannia provide essential amino acids to its host,Camponotus floridanus, and that it may also play a role in nitrogen recycling via its functional urease
|
0.00% |
3.1
|
Amycolatopsis
|
RISB0199 |
Trachymyrmex
Order: Hymenoptera
|
produce antibiotic EC0-0501 that has strong activity against ant-associated Actinobacteria and may also play a role in bacterial competition in this niche
|
0.00% |
3.1
|
Candidatus Blochmanniella
|
RISB1827 |
Camponotus floridanus
Order: Hymenoptera
|
a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission
|
0.00% |
3.1
|
Erwinia
|
RISB2114 |
Bactrocera oleae
Order: Diptera
|
bacteria contribute essential amino acids and metabolize urea into an available nitrogen source for the fly, thus significantly elevating egg production
|
0.00% |
3.0
|
Weissella
|
RISB0641 |
Formica
Order: Hymenoptera
|
exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew
|
0.01% |
2.8
|
Candidatus Blochmanniella
|
RISB2448 |
Camponotus floridanus
Order: Hymenoptera
|
nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling
|
0.00% |
2.7
|
Shewanella
|
RISB1924 |
Anopheles gambiae
Order: Diptera
|
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
|
0.02% |
2.6
|
Bartonella
|
RISB1673 |
Apis mellifera
Order: Hymenoptera
|
a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream
|
0.00% |
2.6
|
Comamonas
|
RISB2021 |
Bactrocera dorsalis
Order: Diptera
|
This group in the immature stages may be helping the insects to cope with oxidative stress by supplementing available oxygen.
|
0.00% |
2.5
|
Nocardia
|
RISB0947 |
Acromyrmex
Order: Hymenoptera
|
Pseudonocardia in the Acromyrmex leaf-cutter ants as a protective partner against the entomopathogenic fungus Metarhizium
|
0.00% |
2.4
|
Coprococcus
|
RISB0092 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.00% |
2.1
|
Nocardia
|
RISB1218 |
Mycocepurus smithii
Order: Hymenoptera
|
produce secondary metabolites with antibiotic activity that protects the fungus garden against pathogens
|
0.00% |
2.1
|
Nitrosospira
|
RISB0869 |
Sirex noctilio
Order: Hymenoptera
|
might be involved in degrading organic matter and fixing nitrogen occurred exclusively in the larval gut
|
0.00% |
2.1
|
Providencia
|
RISB1001 |
Anastrepha obliqua
Order: Diptera
|
improve the sexual competitiveness of males
|
1.19% |
2.1
|
Xanthomonas
|
RISB0217 |
Xylocopa appendiculata
Order: Hymenoptera
|
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
|
0.00% |
1.9
|
Providencia
|
RISB1574 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
1.19% |
1.9
|
Micrococcus
|
RISB2276 |
Ostrinia nubilalis
Order: Lepidoptera
|
extreme cellulolytic enzymes, at extreme (pH 12) conditions, exhibited cellulolytic properties
|
0.02% |
1.9
|
Providencia
|
RISB0984 |
Nasonia vitripennis
Order: Hymenoptera
|
may highly associated with diapause
|
1.19% |
1.9
|
Xenorhabdus
|
RISB1372 |
Spodoptera frugiperda
Order: Lepidoptera
|
the products of the symbiont gene cluster inhibit Spodoptera frugiperda phenoloxidase activity
|
0.00% |
1.9
|
Corynebacterium
|
RISB0363 |
Pagiophloeus tsushimanus
Order: Coleoptera
|
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
|
0.01% |
1.8
|
Corynebacterium
|
RISB0531 |
Helicoverpa armigera
Order: Lepidoptera
|
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
|
0.01% |
1.7
|
Nostoc
|
RISB0812 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-18 oxidation pathway
|
0.05% |
1.5
|
Xenorhabdus
|
RISB2270 |
Acyrthosiphon pisum
Order: Hemiptera
|
have the gene PIN1 encoding the protease inhibitor protein against aphids
|
0.00% |
1.5
|
Vibrio
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.03% |
1.4
|
Massilia
|
RISB2151 |
Osmia bicornis
Order: Hymenoptera
|
may be essential to support Osmia larvae in their nutrient uptake
|
0.00% |
1.3
|
Brevibacterium
|
RISB0464 |
Acrida cinerea
Order: Orthoptera
|
correlated with the hemicellulose digestibility
|
0.00% |
0.9
|
Corynebacterium
|
RISB2360 |
Bombyx mori
Order: Lepidoptera
|
producing lipase in a gut environment
|
0.01% |
0.8
|
Brevibacterium
|
RISB2359 |
Bombyx mori
Order: Lepidoptera
|
producing lipase in a gut environment
|
0.00% |
0.8
|
Mycobacterium
|
RISB1156 |
Nicrophorus concolor
Order: Coleoptera
|
produces Antimicrobial compounds
|
0.00% |
0.6
|
Gilliamella
|
RISB0620 |
Spodoptera frugiperda
Order: Lepidoptera
|
degrade amygdalin
|
0.00% |
0.3
|
Priestia
|
RISB0839 |
Helicoverpa armigera
Order: Lepidoptera
|
producing amylase
|
0.00% |
0.3
|
Comamonas
|
RISB1875 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.00% |
0.3
|
Peribacillus
|
RISB1877 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.00% |
0.3
|
Comamonas
|
RISB1061 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.00% |
0.2
|
Vagococcus
|
RISB0042 |
Aldrichina grahami
Order: Diptera
|
None
|
0.03% |
0.0
|
Weissella
|
RISB1566 |
Liometopum apiculatum
Order: Hymenoptera
|
None
|
0.01% |
0.0
|
Gilliamella
|
RISB1945 |
Apis cerana
Order: Hymenoptera
|
None
|
0.00% |
0.0
|
Bifidobacterium
|
RISB1944 |
Apis cerana
Order: Hymenoptera
|
None
|
0.00% |
0.0
|
Treponema
|
RISB0169 |
Reticulitermes flaviceps
Order: Blattodea
|
None
|
0.00% |
0.0
|
Brevibacterium
|
RISB0897 |
Myzus persicae
Order: Hemiptera
|
None
|
0.00% |
0.0
|
Ralstonia
|
RISB0243 |
Spodoptera frugiperda
Order: Lepidoptera
|
None
|
0.00% |
0.0
|
Methylorubrum
|
RISB0903 |
Myzus persicae
Order: Hemiptera
|
None
|
0.00% |
0.0
|
Brevundimonas
|
RISB1703 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.00% |
0.0
|
Geobacillus
|
RISB1251 |
Potamobates horvathi
Order: Hemiptera
|
None
|
0.00% |
0.0
|
Micromonospora
|
RISB2033 |
Palomena viridissima
Order: Hemiptera
|
None
|
0.00% |
0.0
|
Helicobacter
|
RISB0662 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.00% |
0.0
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.