SRR19543162 - Anastrepha obliqua

Basic Information

Run: SRR19543162

Assay Type: WGS

Bioproject: PRJNA845910

Biosample: SAMN28864722

Bytes: 413722862

Center Name: UNIVERSIDAD DEL VALLE

Sequencing Information

Instrument: Illumina NovaSeq 6000

Library Layout: PAIRED

Library Selection: size fractionation

Platform: ILLUMINA

Geographic Information

Country: Colombia

Continent: South America

Location Name: Colombia: Robles

Latitude/Longitude: 3.07 N 76.35 W

Sample Information

Host: Anastrepha obliqua

Isolation: insect larva tissue

Biosample Model: Metagenome or environmental

Collection Date: 2020-11-21

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Gluconobacter
RISB0016
Aedes aegypti
Order: Diptera
Gluconobacter might increase the susceptibility of Ae. aegypti to CHIKV infection.
26.04%
37.7
Gluconobacter
RISB1882
Drosophila suzukii
Order: Diptera
produce volatile substances that attract female D. suzukii
26.04%
37.2
Gluconobacter
RISB0876
Drosophila suzukii
Order: Diptera
None
26.04%
36.0
Komagataeibacter
RISB1883
Drosophila suzukii
Order: Diptera
produce volatile substances that attract female D. suzukii
18.82%
30.0
Enterobacter sp. T2
RISB0893
Bactrocera dorsalis
Order: Diptera
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
0.77%
20.8
Lactococcus lactis
RISB0131
Ceratitis capitata
Order: Diptera
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The  colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
0.04%
20.0
Klebsiella oxytoca
RISB0130
Ceratitis capitata
Order: Diptera
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The  colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
0.01%
20.0
Enterobacter sp. T2
RISB1338
Ceratitis capitata
Order: Diptera
Enterobacter sp. AA26 dry biomass can fully replace the brewer’s yeast as a protein source in medfly larval diet without any effect on the productivity and the biological quality of reared medfly of VIENNA 8 GSS
0.77%
20.0
Klebsiella michiganensis
RISB1052
Bactrocera dorsalis
Order: Diptera
K. michiganensis BD177 has the strain-specific ability to provide three essential amino acids (phenylalanine, tryptophan and methionine) and two vitamins B (folate and riboflavin) to B. dorsalis
0.03%
18.9
Morganella morganii
RISB0772
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.02%
18.3
Klebsiella oxytoca
RISB1139
Musca domestica
Order: Diptera
It is associated to newly laid housefly eggs, where it is deposited by the female, and has a role in oviposition as well as protection against potential pathogens
0.01%
18.3
Lactococcus lactis
RISB0113
Bactrocera dorsalis
Order: Diptera
increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities
0.04%
18.0
Morganella morganii
RISB0008
Phormia regina
Order: Diptera
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.02%
18.0
Stenotrophomonas maltophilia
RISB1227
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.14%
17.8
Citrobacter freundii
RISB1221
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.09%
17.8
Comamonas terrigena
RISB2021
Bactrocera dorsalis
Order: Diptera
This group in the immature stages may be helping the insects to cope with oxidative stress by supplementing available oxygen.
0.08%
17.6
Enterobacter sp. T2
RISB1311
Ceratitis capitata
Order: Diptera
it was shown to have positive effects in rearing efficiency when used as larval probiotics
0.77%
17.6
Acinetobacter sp. ESL0695
RISB2083
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
1.66%
17.2
Stenotrophomonas maltophilia
RISB1141
Hermetia illucens
Order: Diptera
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
0.14%
16.9
Morganella morganii
RISB0611
Bactrocera dorsalis
Order: Diptera
may hydrolysing nitrogenous waste and providing metabolizable nitrogen for B. dorsalis
0.02%
16.7
Pantoea dispersa
RISB1413
Bactrocera dorsalis
Order: Diptera
causing female Bactrocera dorsalis laid more eggs but had shorter lifespan
0.04%
16.5
Stenotrophomonas maltophilia
RISB1401
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
0.14%
16.5
Citrobacter freundii
RISB1396
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
0.09%
16.4
Lactiplantibacillus plantarum
RISB0674
Drosophila melanogaster
Order: Diptera
could effectively inhibit fungal spore germinations
0.02%
16.0
Providencia sp. PROV252
RISB1574
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.03%
15.8
Pantoea sp. SM3640
RISB1708
Phlebotomus papatasi
Order: Diptera
None
0.71%
15.7
Citrobacter freundii
RISB1162
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
0.09%
15.7
Lactococcus lactis
RISB1167
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
0.04%
15.6
Escherichia coli
RISB1769
Calliphoridae
Order: Diptera
None
0.56%
15.6
Bacillus cereus
RISB1872
Aedes aegypti
Order: Diptera
gut microbiome
0.09%
15.4
Acetobacter oryzifermentans
RISB1742
Drosophila melanogaster
Order: Diptera
None
0.24%
15.2
Bacillus cereus
RISB1701
Phlebotomus papatasi
Order: Diptera
None
0.09%
15.1
Pantoea sp. Lij88
RISB1708
Phlebotomus papatasi
Order: Diptera
None
0.07%
15.1
Asaia
RISB0854
Anopheles stephensi
Order: Diptera
Two complete operons encoding cytochrome bo3-type ubiquinol terminal oxidases (cyoABCD-1 and cyoABCD-2) were found in most Asaia genomes, possibly offering alternative terminal oxidases and allowing the flexible transition of respiratory pathways. Genes involved in the production of 2,3-butandiol and inositol have been found in Asaia sp. W12, possibly contributing to biofilm formation and stress tolerance.
0.07%
15.1
Buchnera aphidicola
RISB0051
Episyrphus balteatus
Order: Diptera
None
0.05%
15.1
Erwinia
RISB1777
Bactrocera oleae
Order: Diptera
a number of genes encoding detoxification and digestive enzymes, indicating a potential association with the ability of B. oleae to cope with green olives. In addition, a number of biological processes seem to be activated in Ca. E. dacicola during the development of larvae in olives, with the most notable being the activation of amino-acid metabolism.
0.05%
15.1
Lactiplantibacillus plantarum
RISB0608
Drosophila melanogaster
Order: Diptera
None
0.02%
15.0
Asaia
RISB0014
Aedes aegypti
Order: Diptera
The bacterium Asaia is considered a highly promising candidate for arboviral control in Aedes mosquitoes.Asaia could play a role in inhibiting CHIKV within Ae. aegypti.
0.07%
13.4
Paenibacillus
RISB0774
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.03%
13.3
Erwinia
RISB2114
Bactrocera oleae
Order: Diptera
bacteria contribute essential amino acids and metabolize urea into an available nitrogen source for the fly, thus significantly elevating egg production
0.05%
13.1
Asaia
RISB2533
Anopheles stephensi
Order: Diptera
Asaia sp. strain effectively lodged in the female gut and salivary glands, sites that are crucial for Plasmodium sp. development and transmission
0.07%
13.0
Erwinia
RISB1505
Bactrocera oleae
Order: Diptera
Antibiotic-treated larvae showed high mortality on unripe olive. The symbiont expressed genes involved in oleuropein-degradation in the gut
0.05%
12.8
Staphylococcus
RISB0427
Anopheles sinensis
Order: Diptera
be identified in each part of the hyperendemic area of this study has a potential role to interact with malaria parasites.
0.06%
12.5
Proteus
RISB2315
Aedes aegypti
Order: Diptera
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
0.03%
12.2
Acinetobacter sp. ESL0695
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
1.66%
11.3
Actinomyces
RISB1234
Hermetia illucens
Order: Diptera
provides the tools for degrading of a broad range of substrates
0.05%
11.3
Dysgonomonas
RISB1235
Hermetia illucens
Order: Diptera
provides the tools for degrading of a broad range of substrates
0.04%
11.3
Pseudomonas sp. URMO17WK12:I11
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
1.11%
10.9
Rickettsia
RISB1273
Culicoides impunctatus
Order: Diptera
possible symbiont-virus interactions
0.03%
10.8
Cedecea
RISB1570
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.01%
10.7
Paenibacillus
RISB2098
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.03%
10.6
Acinetobacter sp. ESL0695
RISB1978
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
1.66%
10.5
Sphingobium
RISB1880
Aedes aegypti
Order: Diptera
gut microbiome
0.11%
10.4
Staphylococcus
RISB1881
Aedes aegypti
Order: Diptera
gut microbiome
0.06%
10.3
Bacillus cereus
RISB2161
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.09%
10.1
Pseudomonas sp. CIP-10
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.27%
10.1
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
0.05%
10.1
Proteus
RISB0054
Episyrphus balteatus
Order: Diptera
None
0.03%
10.0
Rickettsia
RISB0588
Culicoides impunctatus
Order: Diptera
None
0.03%
10.0
Variovorax
RISB1712
Phlebotomus papatasi
Order: Diptera
None
0.03%
10.0
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
0.56%
9.9
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
0.05%
9.8
Pseudomonas sp. URMO17WK12:I11
RISB2224
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
1.11%
9.5
Streptomyces sp. WAC00303
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.39%
9.4
Streptomyces sp. WAC00303
RISB2334
Sirex noctilio
Order: Hymenoptera
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
0.39%
9.1
Streptomyces sp. T12
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.05%
9.0
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.56%
8.3
Blattabacterium cuenoti
RISB0133
Panesthiinae
Order: Blattodea
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
0.03%
8.0
Kosakonia sp. CCTCC M2018092
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.09%
6.5
Kosakonia sp. SMBL-WEM22
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.02%
6.4
Kosakonia sp. BYX6
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.01%
6.4
Providencia sp. PROV252
RISB0984
Nasonia vitripennis
Order: Hymenoptera
may highly associated with diapause
0.03%
5.7
Blattabacterium cuenoti
RISB0518
Cryptocercus punctulatus
Order: Blattodea
collaborative arginine biosynthesis
0.03%
5.7
Blattabacterium cuenoti
RISB0093
Blattella germanica
Order: Blattodea
obligate endosymbiont
0.03%
5.5
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
0.16%
5.2
Agrobacterium tumefaciens
RISB0650
Melanaphis bambusae
Order: Hemiptera
None
0.12%
5.1
Staphylococcus
RISB0945
Callosobruchus maculatus
Order: Coleoptera
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
0.06%
5.1
Burkholderia
RISB1172
Lagria villosa
Order: Coleoptera
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
0.05%
5.1
Zymomonas mobilis
RISB1326
Vespa mandarinia
Order: Hymenoptera
None
0.04%
5.0
Paenibacillus
RISB2195
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.03%
5.0
Rickettsia
RISB0940
Bemisia tabaci
Order: Hemiptera
Rickettsia can be transmitted into plants via whitefly feeding and remain alive within the cotton plants for at least 2 weeks.Then the persistence of Rickettsia and its induced defense responses in cotton plants can increase the fitness of whitefly and, by this, Rickettsia may increase its infection and spread within its whitefly host
0.03%
5.0
Candidatus Kirkpatrickella diaphorinae
RISB0222
Diaphorina citri
Order: Hemiptera
None
0.02%
5.0
Oecophyllibacter saccharovorans
RISB1194
Oecophylla smaragdina
Order: Hymenoptera
None
0.02%
5.0
Formicincola oecophyllae
RISB0578
Oecophylla smaragdina
Order: Hymenoptera
None
0.02%
5.0
Burkholderia
RISB1729
Lagria hirta
Order: Coleoptera
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
0.05%
4.4
Clostridium
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.12%
4.3
Burkholderia
RISB0402
Riptortus pedestris
Order: Hemiptera
symbiont colonization induces the development of the midgut crypts via finely regulating the enterocyte cell cycles, enabling it to stably and abundantly colonize the generated spacious crypts of the bean bug host
0.05%
4.3
Sphingobium
RISB1837
Dendroctonus valens
Order: Coleoptera
It can trongly degrade naringenin, and pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and facilitate naringenin biodegradation by the microbiotas.
0.11%
4.1
Novosphingobium
RISB1837
Dendroctonus valens
Order: Coleoptera
It can trongly degrade naringenin, and pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and facilitate naringenin biodegradation by the microbiotas.
0.06%
4.1
Xanthomonas
RISB0498
Xylocopa appendiculata
Order: Hymenoptera
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
0.04%
3.8
Symbiopectobacterium
RISB1889
Pseudococcus longispinus
Order: Hemiptera
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
0.10%
3.4
Proteus
RISB0001
Leptinotarsa decemlineata
Order: Coleoptera
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
0.03%
2.7
Xanthomonas
RISB0217
Xylocopa appendiculata
Order: Hymenoptera
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
0.04%
2.0
Leuconostoc
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.50%
1.9
Corynebacterium
RISB0363
Pagiophloeus tsushimanus
Order: Coleoptera
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
0.04%
1.8
Corynebacterium
RISB0531
Helicoverpa armigera
Order: Lepidoptera
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
0.04%
1.7
Halomonas
RISB1808
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.03%
1.4
Variovorax
RISB2153
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.03%
1.3
Duganella
RISB2152
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.03%
1.3
Clostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.12%
1.2
Neokomagataea
RISB1560
Oecophylla smaragdina
Order: Hymenoptera
may be related with the formic acid production
0.04%
1.0
Corynebacterium
RISB2360
Bombyx mori
Order: Lepidoptera
producing lipase in a gut environment
0.04%
0.8
Priestia
RISB0839
Helicoverpa armigera
Order: Lepidoptera
producing amylase
0.03%
0.4
Kluyvera
RISB1064
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.02%
0.2
Cupriavidus
RISB0694
Alydus tomentosus
Order: Hemiptera
None
0.16%
0.2
Clostridium
RISB1959
Pyrrhocoridae
Order: Hemiptera
None
0.12%
0.1
Dysgonomonas
RISB1481
Brachinus elongatulus
Order: Coleoptera
None
0.04%
0.0
Halomonas
RISB1374
Bemisia tabaci
Order: Hemiptera
None
0.03%
0.0
Helicobacter
RISB0662
Melanaphis bambusae
Order: Hemiptera
None
0.02%
0.0
Cedecea
RISB0504
Plutella xylostella
Order: Lepidoptera
None
0.01%
0.0

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR19543162
394.6 MB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table