SRR19201361 - Sinoxylon

Basic Information

Run: SRR19201361

Assay Type: WGS

Bioproject: PRJNA836854

Biosample: SAMN28175384

Bytes: 3012051117

Center Name: JOHANNES GUTENBERG-UNIVERSITY MAINZ

Sequencing Information

Instrument: Illumina HiSeq 3000

Library Layout: PAIRED

Library Selection: RANDOM

Platform: ILLUMINA

Geographic Information

Country: Germany

Continent: Europe

Location Name: Germany: University of Hohenheim

Latitude/Longitude: -

Sample Information

Host: Sinoxylon

Isolation: beetle abdomen

Biosample Model: Metagenome or environmental

Collection Date: 2018-07-01

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Pantoea sp. Z09
RISB0736
Psylliodes chrysocephala
Order: Coleoptera
Laboratory-reared and field-collected P. chrysocephala all contained three core genera Pantoea, Acinetobacter and Pseudomonas, and reintroduction of Pantoea sp. Pc8 in antibiotic-fed beetles restored isothiocyanate degradation ability in vivo (by 16S rRNA gene sequencing and LC-MS)
1.88%
21.9
Bacillus cereus
RISB1056
Oryctes rhinoceros
Order: Coleoptera
provide symbiotic digestive functions to Oryctes
5.27%
21.2
Bacillus cereus
RISB1778
Lissorhoptrus oryzophilus
Order: Coleoptera
might be promising paratransgenesis candidates
5.27%
21.2
Pseudomonas sp. CIP-10
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
1.25%
21.1
Pantoea sp. Nvir
RISB0736
Psylliodes chrysocephala
Order: Coleoptera
Laboratory-reared and field-collected P. chrysocephala all contained three core genera Pantoea, Acinetobacter and Pseudomonas, and reintroduction of Pantoea sp. Pc8 in antibiotic-fed beetles restored isothiocyanate degradation ability in vivo (by 16S rRNA gene sequencing and LC-MS)
1.03%
21.0
Serratia sp. JSRIV002
RISB0308
Rhopalotria slossonae
Order: Coleoptera
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores
0.32%
20.3
Staphylococcus gallinarum
RISB0945
Callosobruchus maculatus
Order: Coleoptera
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
0.16%
20.2
Pseudomonas sp. KHPS1
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.24%
20.1
Pantoea sp. BRR-3P
RISB0736
Psylliodes chrysocephala
Order: Coleoptera
Laboratory-reared and field-collected P. chrysocephala all contained three core genera Pantoea, Acinetobacter and Pseudomonas, and reintroduction of Pantoea sp. Pc8 in antibiotic-fed beetles restored isothiocyanate degradation ability in vivo (by 16S rRNA gene sequencing and LC-MS)
0.04%
20.0
Serratia liquefaciens
RISB1624
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.11%
19.9
Pseudomonas sp. NC02
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.09%
19.9
Acinetobacter sp. TTH0-4
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.11%
19.8
Lactococcus lactis
RISB0967
Oulema melanopus
Order: Coleoptera
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
0.17%
18.7
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.90%
18.6
Citrobacter freundii
RISB0517
Leptinotarsa decemlineata
Order: Coleoptera
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
0.18%
18.1
Citrobacter freundii
RISB0127
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.18%
17.9
Morganella morganii
RISB1867
Costelytra zealandica
Order: Coleoptera
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
0.05%
17.9
Proteus vulgaris
RISB0001
Leptinotarsa decemlineata
Order: Coleoptera
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
0.10%
17.8
Enterococcus faecalis
RISB0497
Cryptolestes ferrugineus
Order: Coleoptera
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
0.19%
17.8
Stenotrophomonas maltophilia
RISB0139
Tenebrio molitor
Order: Coleoptera
correlated with polyvinyl chloride PVC degradation
1.76%
17.8
Streptomyces sp. T12
RISB0777
Copris tripartitus
Order: Coleoptera
contribute brood ball hygiene by inhibiting fungal parasites in the environment
1.12%
17.7
Enterococcus faecalis
RISB2042
Harpalus pensylvanicus
Order: Coleoptera
E. faecalis facilitate seed consumption by H. pensylvanicus, possibly by contributing digestive enzymes to their host
0.19%
17.5
Staphylococcus gallinarum
RISB0946
Callosobruchus maculatus
Order: Coleoptera
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine
0.16%
17.5
Serratia liquefaciens
RISB1801
Dendroctonus valens
Order: Coleoptera
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth
0.11%
17.3
Acinetobacter sp. TTH0-4
RISB0706
Curculio chinensis
Order: Coleoptera
facilitate the degradation of tea saponin; genome contains 47 genes relating to triterpenoids degradation
0.11%
17.2
Lactococcus lactis
RISB1430
Rhynchophorus ferrugineus
Order: Coleoptera
promote the development and body mass gain of RPW larvae by improving their nutrition metabolism
0.17%
17.1
Morganella morganii
RISB1548
Costelytra zealandica
Order: Coleoptera
symbionts residing in the colleterial glands produce phenol 1 as the female sex pheromone
0.05%
16.8
Morganella morganii
RISB1868
Costelytra zealandica
Order: Coleoptera
produces phenol as the sex pheromone of the host from tyrosine in the colleterial gland
0.05%
16.8
Wolbachia
RISB1452
Octodonta nipae
Order: Coleoptera
Wolbachia harbored dominantly in a female than the male adult, while, no significant differences were observed between male and female body parts and tissues
3.65%
16.8
Paenibacillus sp. 481
RISB0813
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-9 oxidation pathway
0.32%
16.7
Enterococcus faecalis
RISB0374
Tribolium castaneum
Order: Coleoptera
modulates host phosphine resistance by interfering with the redox system
0.19%
16.6
Streptomyces sp. WAC00303
RISB0777
Copris tripartitus
Order: Coleoptera
contribute brood ball hygiene by inhibiting fungal parasites in the environment
0.04%
16.6
Acinetobacter sp. TTH0-4
RISB0804
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-11 oxidation pathway
0.11%
16.5
Klebsiella pneumoniae
RISB1153
Tenebrio molitor
Order: Coleoptera
degrading plastics
1.00%
16.4
Wolbachia
RISB2107
Sitophilus zeamais
Order: Coleoptera
Wolbachia directly favored weevil fertility and exhibited only mild indirect effects, usually enhancing the SZPE effect
3.65%
16.0
Bacillus toyonensis
RISB1058
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.46%
15.7
Lactococcus lactis
RISB1065
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.17%
15.4
Wolbachia
RISB1282
Ips sp.
Order: Coleoptera
inducing cytoplasmic incompatibility, resulting in reproductive distortions and hence
3.65%
15.4
Staphylococcus epidermidis
RISB1070
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.12%
15.3
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
2.88%
14.2
Spiroplasma
RISB0343
Harmonia axyridis
Order: Coleoptera
female ladybirds co-infected with Hesperomyces harmoniae and Spiroplasma had a significantly lower fecundity and hatchability compared to females with only one or no symbiont
0.68%
14.2
Sphingobacterium
RISB2227
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.06%
13.4
Bacteroides
RISB1183
Oryzaephilus surinamensis
Order: Coleoptera
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
1.23%
13.3
Spiroplasma
RISB1483
Brachinus elongatulus
Order: Coleoptera
may manipulate host reproduction (e.g., cause male-killing) or provide resistance to nematodes and/or parasitoid wasps
0.68%
13.0
Blattabacterium cuenoti
RISB0133
Panesthiinae
Order: Blattodea
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
5.07%
13.0
Kosakonia
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.16%
11.6
Nostoc
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.10%
11.5
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
1.36%
11.4
Spiroplasma
RISB0250
Tenebrio molitor
Order: Coleoptera
associated with PE biodegradation
0.68%
11.3
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
1.36%
11.1
Klebsiella pneumoniae
RISB2185
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
1.00%
11.0
Blattabacterium cuenoti
RISB0518
Cryptocercus punctulatus
Order: Blattodea
collaborative arginine biosynthesis
5.07%
10.8
Stenotrophomonas maltophilia
RISB1122
Bombyx mori
Order: Lepidoptera
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
1.76%
10.8
Mycobacterium
RISB1156
Nicrophorus concolor
Order: Coleoptera
produces Antimicrobial compounds
0.10%
10.7
Kosakonia
RISB1155
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.16%
10.5
Blattabacterium cuenoti
RISB0093
Blattella germanica
Order: Blattodea
obligate endosymbiont
5.07%
10.5
Lysinibacillus
RISB1066
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.13%
10.4
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
0.90%
10.2
Listeria monocytogenes
RISB2308
Drosophila melanogaster
Order: Diptera
L. monocytogenes infection disrupts host energy metabolism by depleting energy stores (triglycerides and glycogen) and reducing metabolic pathway activity (beta-oxidation and glycolysis). The infection affects antioxidant defense by reducing uric acid levels and alters amino acid metabolism. These metabolic changes are accompanied by melanization, potentially linked to decreased tyrosine levels.
0.18%
10.2
Paenibacillus polymyxa
RISB2195
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.17%
10.2
Buchnera aphidicola
RISB0685
Acyrthosiphon pisum
Order: Hemiptera
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
1.36%
10.2
Candidatus Walczuchella monophlebidarum
RISB2075
Llaveia axin axin
Order: Hemiptera
could be supplying most of these precursors for the amino acid biosynthesis as it has the potential to make ribulose-5P from ribose-1P and also PEP and pyruvate from glycolysis. It is also capable of producing homocysteine from homoserine for methionine biosynthesis,
0.10%
10.1
Streptomyces sp. T12
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
1.12%
10.1
Clostridium sp. C1
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.41%
9.6
Stenotrophomonas maltophilia
RISB1227
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
1.76%
9.5
Clostridium sp. MB40-C1
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.18%
9.4
Clostridium sp. DL-VIII
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.05%
9.3
Mammaliicoccus sciuri
RISB0075
Bombyx mori
Order: Lepidoptera
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
0.06%
9.1
Candidatus Portiera aleyrodidarum
RISB1193
Bemisia tabaci
Order: Hemiptera
synthesizing essential amino acid (e.g. tryptophan, leucine and L-Isoleucine), Bemisia tabaci provides vital nutritional support for growth, development and reproduction
0.25%
8.6
Paenibacillus sp. 481
RISB0774
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.32%
8.6
Citrobacter freundii
RISB1221
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.18%
7.9
Candidatus Portiera aleyrodidarum
RISB2289
Bemisia tabaci
Order: Hemiptera
encoding the capability to synthetize, or participate in the synthesis of, several amino acids and carotenoids,
0.25%
7.5
Candidatus Portiera aleyrodidarum
RISB1973
Bemisia tabaci
Order: Hemiptera
a primary symbiont, which compensates for the deficient nutritional composition of its food sources
0.25%
7.2
Xanthomonas
RISB0498
Xylocopa appendiculata
Order: Hymenoptera
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
3.33%
7.1
Candidatus Ishikawella capsulata
RISB2368
Megacopta punctatissima
Order: Hemiptera
Microbe compensates for nutritional deficiency of host diet by supplying essential amino acids
0.13%
7.0
Klebsiella pneumoniae
RISB2459
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
1.00%
7.0
Escherichia coli
RISB2120
Galleria mellonella
Order: Lepidoptera
mediate trans-generational immune priming
0.90%
6.7
Candidatus Karelsulcia muelleri
RISB1591
Philaenus spumarius
Order: Hemiptera
None
1.64%
6.6
Delftia lacustris
RISB1754
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.35%
6.5
Candidatus Walczuchella monophlebidarum
RISB2074
Llaveia axin axin
Order: Hemiptera
may provide metabolic precursors to the flavobacterial endosymbiont
0.10%
6.4
Lactiplantibacillus plantarum
RISB0674
Drosophila melanogaster
Order: Diptera
could effectively inhibit fungal spore germinations
0.18%
6.2
Proteus vulgaris
RISB2460
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
0.10%
6.1
Providencia rettgeri
RISB1001
Anastrepha obliqua
Order: Diptera
improve the sexual competitiveness of males
0.14%
6.0
Candidatus Ishikawella capsulata
RISB2543
Megacopta punctatissima
Order: Hemiptera
Enhance pest status of the insect host
0.13%
5.9
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
0.77%
5.8
Providencia rettgeri
RISB1169
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
0.14%
5.7
Chryseobacterium sp. T16E-39
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.07%
5.6
Chryseobacterium sp. MYb264
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.05%
5.6
Delftia lacustris
RISB0657
Melanaphis bambusae
Order: Hemiptera
None
0.35%
5.4
Xanthomonas
RISB0217
Xylocopa appendiculata
Order: Hymenoptera
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
3.33%
5.3
Arsenophonus
RISB1047
Aphis gossypii
Order: Hemiptera
secondary symbiont reduction led to reduction of the total life span and intrinsic rate of natural increase as well as appearance of the deformed dead offspring. H. defensa and Arsenophonus contributed to the fitness of A. gossypii by enhancing its performance, but not through parasitoid resistance.
0.27%
5.3
Lactiplantibacillus plantarum
RISB0608
Drosophila melanogaster
Order: Diptera
None
0.18%
5.2
Lactobacillus
RISB1866
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.17%
5.2
Providencia rettgeri
RISB1352
Nasonia vitripennis
Order: Hymenoptera
None
0.14%
5.1
Rickettsia bellii
RISB1897
Bemisia tabaci
Order: Hemiptera
None
0.12%
5.1
Candidatus Erwinia haradaeae
RISB1632
Lachninae
Order: Hemiptera
None
0.07%
5.1
Arsenophonus
RISB1300
Aphis gossypii
Order: Hemiptera
Arsenophonus sp. can have different effects on its hosts, including obligate mutualism in blood-sucking insects, improving the performance of whiteflies, or through facultative mutualism by protecting psyllids against parasitoid attacks.
0.27%
5.0
Treponema
RISB2377
termite
Order: Blattodea
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
0.06%
4.9
Apibacter
RISB0603
Apis cerana
Order: Hymenoptera
The acquisition of genes for the degradation of the toxic monosaccharides potentiates Apibacter with the ability to utilize the pollen hydrolysis products, at the same time enabling monosaccharide detoxification for the host
0.13%
4.6
Arsenophonus
RISB1334
Ommatissus lybicus
Order: Hemiptera
the removal of Arsenophonus increased the developmental time of the immature stages and reduced the values of different life-history parameters including nymphal survival rate and adult longevity in the host
0.27%
4.4
Bacteroides
RISB0256
Leptocybe invasa
Order: Hymenoptera
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
1.23%
3.5
Lactobacillus
RISB0292
Lymantria dispar asiatica
Order: Lepidoptera
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
0.17%
3.5
Bacteroides
RISB0090
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
1.23%
3.4
Candidatus Blochmanniella
RISB2542
Camponotus
Order: Hymenoptera
Blochmannia provide essential amino acids to its host,Camponotus floridanus, and that it may also play a role in nitrogen recycling via its functional urease
0.08%
3.2
Candidatus Blochmanniella
RISB1827
Camponotus floridanus
Order: Hymenoptera
a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission
0.08%
3.2
Lactobacillus
RISB0715
Spodoptera frugiperda
Order: Lepidoptera
Have the function of nutrient absorption, energy metabolism, the plant’s secondary metabolites degradation, insect immunity regulation, and so on
0.17%
3.1
Candidatus Blochmanniella
RISB2448
Camponotus floridanus
Order: Hymenoptera
nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling
0.08%
2.8
Shewanella
RISB1924
Anopheles gambiae
Order: Diptera
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
0.26%
2.8
Sphingobacterium
RISB1226
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.06%
2.8
Bartonella
RISB1673
Apis mellifera
Order: Hymenoptera
a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream
0.08%
2.6
Yersinia
RISB0492
Cimex hemipterus
Order: Hemiptera
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
0.17%
2.6
Streptococcus
RISB2625
Galleria mellonella
Order: Lepidoptera
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
0.40%
2.4
Apilactobacillus
RISB0475
Apis mellifera
Order: Hymenoptera
A. kunkeei alleviated acetamiprid-induced symbiotic microbiota dysregulation and mortality in honeybees
0.09%
2.2
Flavobacterium
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
2.13%
2.1
Nitrosospira
RISB0869
Sirex noctilio
Order: Hymenoptera
might be involved in degrading organic matter and fixing nitrogen occurred exclusively in the larval gut
0.04%
2.1
Streptococcus
RISB2624
Reticulitermes flavipes
Order: Blattodea
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
0.40%
2.0
Xenorhabdus
RISB1372
Spodoptera frugiperda
Order: Lepidoptera
the products of the symbiont gene cluster inhibit Spodoptera frugiperda phenoloxidase activity
0.04%
1.9
Candidatus Zinderia
RISB2451
Clastoptera arizonana
Order: Hemiptera
Zinderia had gene homologs for the production of tryptophan, methionine, and histidine
0.03%
1.8
Streptococcus
RISB2604
Homona magnanima
Order: Lepidoptera
influence the growth of Bacillus thuringiensis in the larvae
0.40%
1.6
Xenorhabdus
RISB2270
Acyrthosiphon pisum
Order: Hemiptera
have the gene PIN1 encoding the protease inhibitor protein against aphids
0.04%
1.5
Sphingobacterium
RISB1400
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
0.06%
1.4
Paraclostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.21%
1.3
Lysinibacillus
RISB1416
Psammotermes hypostoma
Order: Blattodea
isolates showed significant cellulolytic activity
0.13%
1.1
Peribacillus
RISB1877
Aedes aegypti
Order: Diptera
gut microbiome
0.45%
0.7
Neisseria
RISB0512
Plutella xylostella
Order: Lepidoptera
None
0.55%
0.6
Priestia
RISB0839
Helicoverpa armigera
Order: Lepidoptera
producing amylase
0.18%
0.5
Achromobacter
RISB1869
Aedes aegypti
Order: Diptera
gut microbiome
0.17%
0.5
Candidatus Zinderia
RISB1640
Clastoptera arizonana
Order: Hemiptera
Nitrogen-Fixing
0.03%
0.3
Cupriavidus
RISB0694
Alydus tomentosus
Order: Hemiptera
None
0.25%
0.3
Vagococcus
RISB0042
Aldrichina grahami
Order: Diptera
None
0.20%
0.2
Helicobacter
RISB0662
Melanaphis bambusae
Order: Hemiptera
None
0.19%
0.2
Myroides
RISB0626
Musca altica
Order: Diptera
None
0.18%
0.2
Yersinia
RISB0407
Anaphes nitens
Order: Hymenoptera
None
0.17%
0.2
Achromobacter
RISB0383
Aphis gossypii
Order: Hemiptera
None
0.17%
0.2
Candidatus Profftia
RISB1664
Adelgidae
Order: Hemiptera
None
0.17%
0.2
Apibacter
RISB0604
Apis cerana
Order: Hymenoptera
None
0.13%
0.1
Legionella
RISB1687
Polyplax serrata
Order: Phthiraptera
None
0.07%
0.1
Treponema
RISB0169
Reticulitermes flaviceps
Order: Blattodea
None
0.06%
0.1

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR19201361
2.8 GB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table