SRR19201359 - Sinoxylon

Basic Information

Run: SRR19201359

Assay Type: WGS

Bioproject: PRJNA836854

Biosample: SAMN28175386

Bytes: 3253798032

Center Name: JOHANNES GUTENBERG-UNIVERSITY MAINZ

Sequencing Information

Instrument: Illumina HiSeq 3000

Library Layout: PAIRED

Library Selection: RANDOM

Platform: ILLUMINA

Geographic Information

Country: United Arab Emirates

Continent: Asia

Location Name: United Arab Emirates: Emirate of Fujairah

Latitude/Longitude: -

Sample Information

Host: Sinoxylon

Isolation: beetle abdomen

Biosample Model: Metagenome or environmental

Collection Date: 2005-06-05

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Burkholderia gladioli
RISB1172
Lagria villosa
Order: Coleoptera
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
0.01%
20.0
Pantoea sp. Z09
RISB0736
Psylliodes chrysocephala
Order: Coleoptera
Laboratory-reared and field-collected P. chrysocephala all contained three core genera Pantoea, Acinetobacter and Pseudomonas, and reintroduction of Pantoea sp. Pc8 in antibiotic-fed beetles restored isothiocyanate degradation ability in vivo (by 16S rRNA gene sequencing and LC-MS)
0.00%
20.0
Stenotrophomonas sp. ESTM1D_MKCIP4_1
RISB0325
Pharaxonotha floridana
Order: Coleoptera
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores
0.00%
20.0
Staphylococcus gallinarum
RISB0945
Callosobruchus maculatus
Order: Coleoptera
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
0.00%
20.0
Pseudomonas sp. FDAARGOS_380
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.01%
19.8
Pseudomonas sp. FJ2-5-13
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.00%
19.8
Acinetobacter sp. AOR07_HL
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.10%
19.8
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
2.03%
19.8
Acinetobacter sp. KS-LM10
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.06%
19.7
Acinetobacter sp. NCu2D-2
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.05%
19.7
Pseudomonas fulva
RISB1510
Hypothenemus hampei
Order: Coleoptera
Antibiotic-treated larvae showed lower caffeine-degrading activity and increased mortality. These deficients were recovered by inoculation of the caffeine-degrading symbiont. A caffeine-degrading gene was detected from the symbiont
0.00%
19.6
Burkholderia gladioli
RISB1729
Lagria hirta
Order: Coleoptera
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
0.01%
19.3
Klebsiella pneumoniae
RISB1153
Tenebrio molitor
Order: Coleoptera
degrading plastics
3.57%
18.9
Burkholderia gladioli
RISB1604
Lagria villosa
Order: Coleoptera
Bacteria produce icosalide, an unusual two-tailed lipocyclopeptide antibiotic,which is active against entomopathogenic bacteria, thus adding to the chemical armory protecting beetle offspring
0.01%
18.8
Lactococcus lactis
RISB0967
Oulema melanopus
Order: Coleoptera
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
0.00%
18.6
Stenotrophomonas sp. ESTM1D_MKCIP4_1
RISB2228
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.00%
18.3
Enterobacter sp. E20
RISB2221
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.00%
18.3
Sphingobacterium sp. ML3W
RISB2227
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.00%
18.3
Klebsiella oxytoca
RISB1506
Cleonus trivittatus
Order: Coleoptera
Antibiotic-treated larvae suffered growth retardation on a diet containing plant extract or swainsonine. Gut bacteria showed toxin-degradation activities in vitro
0.00%
18.2
Enterococcus faecalis
RISB0497
Cryptolestes ferrugineus
Order: Coleoptera
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
0.41%
18.0
Sodalis praecaptivus
RISB1718
Sitophilus zeamais
Order: Coleoptera
we investigated the role of a quorum sensing(QS ) system in S. praecaptivus and found that it negatively regulates a potent insect-killing phenotype
0.00%
18.0
Citrobacter freundii
RISB0517
Leptinotarsa decemlineata
Order: Coleoptera
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
0.03%
17.9
Citrobacter freundii complex sp. CFNIH2
RISB0517
Leptinotarsa decemlineata
Order: Coleoptera
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
0.00%
17.9
Morganella morganii
RISB1867
Costelytra zealandica
Order: Coleoptera
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
0.00%
17.8
Enterococcus faecalis
RISB2042
Harpalus pensylvanicus
Order: Coleoptera
E. faecalis facilitate seed consumption by H. pensylvanicus, possibly by contributing digestive enzymes to their host
0.41%
17.8
Citrobacter freundii
RISB0127
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.03%
17.8
Proteus vulgaris
RISB0001
Leptinotarsa decemlineata
Order: Coleoptera
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
0.02%
17.7
Bacillus sp. Y1
RISB1645
Osphranteria coerulescens
Order: Coleoptera
The isolate has cellulolytic activity and can hydrolyze CMC, avicel, cellulose and sawdust with broad temperature and pH stability
0.00%
17.6
Enterobacter sp. E20
RISB0496
Sitophilus oryzae
Order: Coleoptera
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
0.00%
17.6
Bacillus subtilis
RISB0494
Sitophilus oryzae
Order: Coleoptera
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
0.00%
17.6
Staphylococcus gallinarum
RISB0946
Callosobruchus maculatus
Order: Coleoptera
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine
0.00%
17.4
Serratia marcescens
RISB1295
Nicrophorus vespilloides
Order: Coleoptera
producing antibacterial compound Serrawettin W2, which has antibacterial and nematode-inhibiting effects
0.00%
17.1
Enterobacter cloacae
RISB1428
Rhynchophorus ferrugineus
Order: Coleoptera
promote the development and body mass gain of RPW larvae by improving their nutrition metabolism
0.03%
17.0
Lactococcus lactis
RISB1430
Rhynchophorus ferrugineus
Order: Coleoptera
promote the development and body mass gain of RPW larvae by improving their nutrition metabolism
0.00%
16.9
Enterococcus faecalis
RISB0374
Tribolium castaneum
Order: Coleoptera
modulates host phosphine resistance by interfering with the redox system
0.41%
16.9
Morganella morganii
RISB1548
Costelytra zealandica
Order: Coleoptera
symbionts residing in the colleterial glands produce phenol 1 as the female sex pheromone
0.00%
16.8
Serratia marcescens
RISB0365
Pagiophloeus tsushimanus
Order: Coleoptera
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
0.00%
16.8
Corynebacterium variabile
RISB0363
Pagiophloeus tsushimanus
Order: Coleoptera
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
0.00%
16.8
Morganella morganii
RISB1868
Costelytra zealandica
Order: Coleoptera
produces phenol as the sex pheromone of the host from tyrosine in the colleterial gland
0.00%
16.7
Streptomyces sp. WAC00303
RISB0777
Copris tripartitus
Order: Coleoptera
contribute brood ball hygiene by inhibiting fungal parasites in the environment
0.01%
16.6
Streptomyces sp. T12
RISB0777
Copris tripartitus
Order: Coleoptera
contribute brood ball hygiene by inhibiting fungal parasites in the environment
0.00%
16.6
Pantoea sp. Z09
RISB0814
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-14 oxidation pathway
0.00%
16.4
Stenotrophomonas sp. ESTM1D_MKCIP4_1
RISB0816
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-20 oxidation pathway
0.00%
16.4
Klebsiella sp. WP3-S18-ESBL-05
RISB0809
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-17 oxidation pathway
0.00%
16.4
Kosakonia sp. BYX6
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.00%
16.4
Delftia sp. Cs1-4
RISB0806
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-19 oxidation pathway
0.00%
16.4
Bacillus sp. Y1
RISB0805
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-8 oxidation pathway
0.00%
16.4
Paenibacillus sp. D2_2
RISB0813
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-9 oxidation pathway
0.00%
16.4
Serratia marcescens
RISB1158
Nicrophorus vespilloides
Order: Coleoptera
produces an antibacterial cyclic lipopeptide called serrawettin W2
0.00%
16.3
Lysinibacillus fusiformis
RISB1066
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.01%
15.2
Staphylococcus epidermidis
RISB1070
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.00%
15.2
Lactococcus lactis
RISB1065
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.00%
15.2
Diaphorobacter aerolatus
RISB1062
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.00%
15.2
Pantoea agglomerans
RISB1858
Lissorhoptrus oryzophilus
Order: Coleoptera
None
0.00%
15.0
Methylovirgula
RISB0137
Coccinella septempunctata
Order: Coleoptera
Methylovirgula is ubiquitous in soil and has been found in many soil samples as a major species producing carbon activity, scholars have found that the microorganism has the highest content in mixed peat swamp forest systems and has the effect of harnessing and reducing methane
0.00%
15.0
Rhodobacter
RISB0138
Coccinella septempunctata
Order: Coleoptera
Rhodanobacter genera can utilize various carbon sources, including cellobiose. In larvae of longhorned beetles that feed on plants rich in carbohydrates (cellulose and hemicellulose) and lignin, Rhodanobacter can help the larvae digest more carbon nutrients through carbon sequestration
0.00%
15.0
Sphingobium
RISB1837
Dendroctonus valens
Order: Coleoptera
It can trongly degrade naringenin, and pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and facilitate naringenin biodegradation by the microbiotas.
0.15%
14.2
Novosphingobium
RISB1837
Dendroctonus valens
Order: Coleoptera
It can trongly degrade naringenin, and pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and facilitate naringenin biodegradation by the microbiotas.
0.03%
14.1
Spiroplasma
RISB0343
Harmonia axyridis
Order: Coleoptera
female ladybirds co-infected with Hesperomyces harmoniae and Spiroplasma had a significantly lower fecundity and hatchability compared to females with only one or no symbiont
0.00%
13.5
Raoultella
RISB2226
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.00%
13.3
Wolbachia
RISB1452
Octodonta nipae
Order: Coleoptera
Wolbachia harbored dominantly in a female than the male adult, while, no significant differences were observed between male and female body parts and tissues
0.00%
13.1
Bacteroides
RISB1183
Oryzaephilus surinamensis
Order: Coleoptera
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
0.41%
12.5
Wolbachia
RISB2107
Sitophilus zeamais
Order: Coleoptera
Wolbachia directly favored weevil fertility and exhibited only mild indirect effects, usually enhancing the SZPE effect
0.00%
12.4
Spiroplasma
RISB1483
Brachinus elongatulus
Order: Coleoptera
may manipulate host reproduction (e.g., cause male-killing) or provide resistance to nematodes and/or parasitoid wasps
0.00%
12.4
Micrococcus
RISB2277
Leptinotarsa decemlineata
Order: Coleoptera
extreme cellulolytic enzymes, at extreme (pH 12) conditions, exhibited cellulolytic properties
0.01%
11.9
Bradyrhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
0.23%
11.8
Wolbachia
RISB1282
Ips sp.
Order: Coleoptera
inducing cytoplasmic incompatibility, resulting in reproductive distortions and hence
0.00%
11.7
Rhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
0.05%
11.6
Paraclostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
10.44%
11.5
Leuconostoc
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.00%
11.4
Nostoc
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.00%
11.4
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
2.03%
11.4
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.01%
11.3
Halomonas
RISB1808
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.01%
11.3
Raoultella
RISB1007
Monochamus alternatus
Order: Coleoptera
may help M. alternatus degrade cellulose and pinene
0.00%
11.0
Cronobacter
RISB0247
Tenebrio molitor
Order: Coleoptera
may be indirectly involved in the digestion of PE
0.01%
11.0
Spiroplasma
RISB0250
Tenebrio molitor
Order: Coleoptera
associated with PE biodegradation
0.00%
10.7
Trabulsiella
RISB1685
Melolontha hippocastani
Order: Coleoptera
Involved in cellulose degradation
0.00%
10.7
Mycobacterium
RISB1156
Nicrophorus concolor
Order: Coleoptera
produces Antimicrobial compounds
0.01%
10.7
Aeromonas
RISB1145
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.01%
10.4
Rhodococcus
RISB1157
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.01%
10.4
Exiguobacterium
RISB1152
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.00%
10.4
Kluyvera
RISB1064
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.00%
10.2
Micromonospora
RISB2034
Harpalus sinicus
Order: Coleoptera
None
0.02%
10.0
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
0.01%
10.0
Paenibacillus polymyxa
RISB2195
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.00%
10.0
Arsenophonus sp. aPb
RISB1047
Aphis gossypii
Order: Hemiptera
secondary symbiont reduction led to reduction of the total life span and intrinsic rate of natural increase as well as appearance of the deformed dead offspring. H. defensa and Arsenophonus contributed to the fitness of A. gossypii by enhancing its performance, but not through parasitoid resistance.
0.00%
10.0
Francisella tularensis
RISB1907
Bombyx mori
Order: Lepidoptera
After infection with F. tularensis, the induction of melanization and nodulation, which are immune responses to bacterial infection, were inhibited in silkworms. Pre-inoculation of silkworms with F. tularensis enhanced the expression of antimicrobial peptides and resistance to infection by pathogenic bacteria.
0.00%
10.0
Listeria monocytogenes
RISB2308
Drosophila melanogaster
Order: Diptera
L. monocytogenes infection disrupts host energy metabolism by depleting energy stores (triglycerides and glycogen) and reducing metabolic pathway activity (beta-oxidation and glycolysis). The infection affects antioxidant defense by reducing uric acid levels and alters amino acid metabolism. These metabolic changes are accompanied by melanization, potentially linked to decreased tyrosine levels.
0.00%
10.0
Microbacterium oleivorans
RISB2194
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.00%
10.0
Dysgonomonas
RISB1481
Brachinus elongatulus
Order: Coleoptera
None
0.00%
10.0
Deinococcus sp. AB2017081
RISB1649
Camponotus japonicus
Order: Hymenoptera
Four new aminoglycolipids, deinococcucins A–D, were discovered from a Deinococcus sp. strain isolated from the gut of queen carpenter ants, Camponotus japonicus, showed functional ability of inducing the quinone reductase production in host cells
0.00%
9.9
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
0.01%
9.8
Arsenophonus sp. aPb
RISB1300
Aphis gossypii
Order: Hemiptera
Arsenophonus sp. can have different effects on its hosts, including obligate mutualism in blood-sucking insects, improving the performance of whiteflies, or through facultative mutualism by protecting psyllids against parasitoid attacks.
0.00%
9.7
Clostridium sp. LQ25
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.40%
9.6
Clostridium sp. MB40-C1
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.14%
9.4
Clostridium sp. OS1-26
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.03%
9.3
Mammaliicoccus sciuri
RISB0075
Bombyx mori
Order: Lepidoptera
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
0.00%
9.0
Streptomyces sp. WAC00303
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.01%
9.0
Weissella cibaria
RISB1982
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
0.04%
8.9
Buchnera aphidicola
RISB0685
Acyrthosiphon pisum
Order: Hemiptera
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
0.01%
8.8
Xanthomonas sp. CFBP 8443
RISB0498
Xylocopa appendiculata
Order: Hymenoptera
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
0.00%
8.8
Sodalis praecaptivus
RISB0122
Nezara viridula
Order: Hemiptera
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies.
0.00%
8.6
Arthrobacter sp. NEB 688
RISB0769
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.00%
8.3
Paenibacillus sp. D2_2
RISB0774
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.00%
8.3
Arsenophonus sp. aPb
RISB1048
Aphis gossypii
Order: Hemiptera
symbiont reduction led to reduction of the total life span and intrinsic rate of natural increase as well as appearance of the deformed dead offspring
0.00%
8.0
Blattabacterium cuenoti
RISB0133
Panesthiinae
Order: Blattodea
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
0.00%
7.9
Escherichia coli
RISB2120
Galleria mellonella
Order: Lepidoptera
mediate trans-generational immune priming
2.03%
7.9
Caballeronia insecticola
RISB0276
Riptortus pedestris
Order: Hemiptera
Gut symbiont resulted in increase in the body size and weight of male adults;increased dispersal capacity of male adults especially for flight
0.00%
7.8
Weissella cibaria
RISB0641
Formica
Order: Hymenoptera
exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew
0.04%
7.8
Comamonas terrigena
RISB2021
Bactrocera dorsalis
Order: Diptera
This group in the immature stages may be helping the insects to cope with oxidative stress by supplementing available oxygen.
0.07%
7.6
Chromobacterium sp. ATCC 53434
RISB1453
Aedes aegypti
Order: Diptera
aminopeptidase secreted by a Chromobacterium species suppresses DENV infection by directly degrading the DENV envelope protein
0.00%
7.5
Carnobacterium maltaromaticum
RISB1693
Plutella xylostella
Order: Lepidoptera
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
0.00%
7.5
Psychrobacter sp. LV10R520-6
RISB1773
Calliphoridae
Order: Diptera
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
0.00%
7.4
Xanthomonas sp. CFBP 8443
RISB0217
Xylocopa appendiculata
Order: Hymenoptera
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
0.00%
6.9
Leclercia adecarboxylata
RISB1757
Spodoptera frugiperda
Order: Lepidoptera
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
0.05%
6.9
Microbacterium arborescens
RISB1759
Spodoptera frugiperda
Order: Lepidoptera
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
0.00%
6.8
Sphingomonas sp. LY54
RISB0134
Spodoptera frugiperda
Order: Lepidoptera
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
0.02%
6.7
Sphingomonas sp. MM-1
RISB0134
Spodoptera frugiperda
Order: Lepidoptera
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
0.01%
6.7
Sphingomonas sp. AP4-R1
RISB0134
Spodoptera frugiperda
Order: Lepidoptera
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
0.00%
6.6
Carnobacterium maltaromaticum
RISB1692
Plutella xylostella
Order: Lepidoptera
participate in the synthesis of host lacking amino acids histidine and threonine
0.00%
6.6
Frischella perrara
RISB2028
Diceroprocta semicincta
Order: Hemiptera
causes the formation of a scab-like structure on the gut epithelium of its host
0.00%
6.6
Leclercia adecarboxylata
RISB1758
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.05%
6.2
Delftia lacustris
RISB1754
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.01%
6.2
Microbacterium arborescens
RISB1761
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.00%
6.1
Proteus vulgaris
RISB2460
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
0.02%
6.0
Lactiplantibacillus plantarum
RISB0674
Drosophila melanogaster
Order: Diptera
could effectively inhibit fungal spore germinations
0.00%
6.0
Lysinibacillus fusiformis
RISB1417
Psammotermes hypostoma
Order: Blattodea
isolates showed significant cellulolytic activity
0.01%
6.0
Providencia rettgeri
RISB1001
Anastrepha obliqua
Order: Diptera
improve the sexual competitiveness of males
0.03%
5.9
Carnobacterium maltaromaticum
RISB1691
Plutella xylostella
Order: Lepidoptera
activity of cellulose and hemicellulose
0.00%
5.8
Providencia sp. 21OH12SH02B-Prov
RISB1574
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.01%
5.7
Providencia sp. PROV252
RISB1574
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.00%
5.7
Methylobacterium sp. FF17
RISB2053
Atractomorpha sinensis
Order: Orthoptera
associated with cellulolytic enzymes
0.00%
5.7
Blattabacterium cuenoti
RISB0518
Cryptocercus punctulatus
Order: Blattodea
collaborative arginine biosynthesis
0.00%
5.7
Aquitalea sp. USM4
RISB2089
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.00%
5.6
Chryseobacterium sp. IHB B 17019
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.00%
5.6
Blattabacterium cuenoti
RISB0093
Blattella germanica
Order: Blattodea
obligate endosymbiont
0.00%
5.4
Bombilactobacillus bombi
RISB0617
Spodoptera frugiperda
Order: Lepidoptera
degrade amygdalin
0.00%
5.3
Comamonas testosteroni
RISB1875
Aedes aegypti
Order: Diptera
gut microbiome
0.03%
5.3
Brevundimonas sp. M20
RISB1703
Phlebotomus papatasi
Order: Diptera
None
0.19%
5.2
Variovorax sp. RKNM96
RISB1712
Phlebotomus papatasi
Order: Diptera
None
0.13%
5.1
Variovorax sp. PAMC26660
RISB1712
Phlebotomus papatasi
Order: Diptera
None
0.09%
5.1
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
0.09%
5.1
Variovorax sp. 38R
RISB1712
Phlebotomus papatasi
Order: Diptera
None
0.06%
5.1
Bosea sp. RAC05
RISB1702
Phlebotomus papatasi
Order: Diptera
None
0.04%
5.0
Delftia lacustris
RISB0657
Melanaphis bambusae
Order: Hemiptera
None
0.01%
5.0
Brevundimonas sp. DS20
RISB1703
Phlebotomus papatasi
Order: Diptera
None
0.01%
5.0
Bosea sp. (in: a-proteobacteria)
RISB1702
Phlebotomus papatasi
Order: Diptera
None
0.01%
5.0
Cupriavidus pauculus
RISB0694
Alydus tomentosus
Order: Hemiptera
None
0.01%
5.0
Agrobacterium tumefaciens
RISB0650
Melanaphis bambusae
Order: Hemiptera
None
0.01%
5.0
Sphingobacterium multivorum
RISB0671
Melanaphis bambusae
Order: Hemiptera
None
0.00%
5.0
Trabulsiella
RISB2201
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.00%
5.0
Caballeronia grimmiae
RISB0689
Leptoglossus zonatus
Order: Hemiptera
None
0.00%
5.0
Lactiplantibacillus plantarum
RISB0608
Drosophila melanogaster
Order: Diptera
None
0.00%
5.0
Brevundimonas sp. PAMC22021
RISB1703
Phlebotomus papatasi
Order: Diptera
None
0.00%
5.0
Bosea sp. PAMC 26642
RISB1702
Phlebotomus papatasi
Order: Diptera
None
0.00%
5.0
Candidatus Erwinia haradaeae
RISB1632
Lachninae
Order: Hemiptera
None
0.00%
5.0
Thauera sp. K11
RISB1711
Phlebotomus papatasi
Order: Diptera
None
0.00%
5.0
Zymomonas mobilis
RISB1326
Vespa mandarinia
Order: Hymenoptera
None
0.00%
5.0
Flavobacterium johnsoniae
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
0.00%
5.0
Candidatus Karelsulcia muelleri
RISB1591
Philaenus spumarius
Order: Hemiptera
None
0.00%
5.0
Gilliamella
RISB0102
Apis mellifera
Order: Hymenoptera
Gilliamella apicola carries the gene for the desaturase FADS2, which is able to metabolize polyunsaturated fatty acids from pollen and synthesize endocannabinoid, a lipogenic neuroactive substance, thereby modulating reward learning and memory in honeybees.
0.00%
5.0
Acetobacter
RISB1865
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.00%
5.0
Lactobacillus
RISB1866
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.00%
5.0
Cellulosimicrobium
RISB2182
Armadillidae
Order: Isopoda
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.00%
5.0
Bifidobacterium
RISB0174
Apis mellifera
Order: Hymenoptera
Bifidobacterium provides complementary demethylation service to promote Gilliamella growth on methylated homogalacturonan, an enriched polysaccharide of pectin. In exchange, Gilliamella shares digestive products with Bifidobacterium, through which a positive interaction is established
0.00%
5.0
Treponema
RISB2377
termite
Order: Blattodea
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
0.00%
4.9
Acetobacter
RISB0961
Drosophila melanogaster
Order: Diptera
The exist of Acetobacter had a balancing effect on food ingestion when carbohydrate levels were high in the warmer months, stabilizing fitness components of flies across the year.
0.00%
3.6
Bifidobacterium
RISB0616
Spodoptera frugiperda
Order: Lepidoptera
Strain wkB204 grew in the presence of amygdalin as the sole carbon source, suggesting that this strain degrades amygdalin and is not susceptible to the potential byproducts
0.00%
3.4
Lactobacillus
RISB0292
Lymantria dispar asiatica
Order: Lepidoptera
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
0.00%
3.4
Amycolatopsis
RISB0483
Trachymyrmex smithi
Order: Hymenoptera
inhibited the growth of Pseudonocardia symbionts under laboratory conditions. The novel analog nocamycin V from the strain was identified as the antibacterial compound
0.02%
3.4
Methylobacter
RISB1440
Lutzomyia evansi
Order: Diptera
Methylobacterium can be important in several physiological and metabolic processes in Lu. evansi, which suggests that interactions could occur with Leishmania parasite
0.00%
3.3
Rhodococcus
RISB0775
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.01%
3.3
Leucobacter
RISB0771
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.00%
3.3
Amycolatopsis
RISB0199
Trachymyrmex
Order: Hymenoptera
produce antibiotic EC0-0501 that has strong activity against ant-associated Actinobacteria and may also play a role in bacterial competition in this niche
0.02%
3.1
Yokenella
RISB1492
Nezara viridula
Order: Hemiptera
help stinkbugs to feed on soybean developing seeds in spite of its chemical defenses by degrading isoflavonoids and deactivate soybean protease inhibitors
0.00%
3.1
Tsukamurella
RISB1531
Hoplothrips carpathicus
Order: Thysanoptera
This genus was identified as dominant in intensively feeding second-stage larvae and suggests a mechanism by which L2 larvae might process cellulose.
0.00%
3.0
Lactobacillus
RISB0715
Spodoptera frugiperda
Order: Lepidoptera
Have the function of nutrient absorption, energy metabolism, the plant’s secondary metabolites degradation, insect immunity regulation, and so on
0.00%
2.9
Bacteroides
RISB0256
Leptocybe invasa
Order: Hymenoptera
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
0.41%
2.7
Pseudonocardia
RISB0947
Acromyrmex
Order: Hymenoptera
Pseudonocardia in the Acromyrmex leaf-cutter ants as a protective partner against the entomopathogenic fungus Metarhizium
0.29%
2.7
Exiguobacterium
RISB0007
Phormia regina
Order: Diptera
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.00%
2.7
Shewanella
RISB1924
Anopheles gambiae
Order: Diptera
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
0.01%
2.6
Azospira
RISB1918
Anopheles gambiae
Order: Diptera
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
0.00%
2.5
Bacteroides
RISB0090
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.41%
2.5
Streptococcus
RISB2625
Galleria mellonella
Order: Lepidoptera
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
0.48%
2.5
Nocardia
RISB0947
Acromyrmex
Order: Hymenoptera
Pseudonocardia in the Acromyrmex leaf-cutter ants as a protective partner against the entomopathogenic fungus Metarhizium
0.02%
2.4
Yersinia
RISB0492
Cimex hemipterus
Order: Hemiptera
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
0.00%
2.4
Pseudonocardia
RISB1218
Mycocepurus smithii
Order: Hymenoptera
produce secondary metabolites with antibiotic activity that protects the fungus garden against pathogens
0.29%
2.4
Acetobacter
RISB0184
Drosophila melanogaster
Order: Diptera
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
0.00%
2.3
Streptococcus
RISB2624
Reticulitermes flavipes
Order: Blattodea
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
0.48%
2.1
Blautia
RISB0091
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.00%
2.1
Nocardia
RISB1218
Mycocepurus smithii
Order: Hymenoptera
produce secondary metabolites with antibiotic activity that protects the fungus garden against pathogens
0.02%
2.1
Rhodococcus
RISB0430
Rhodnius prolixus
Order: Hemiptera
Rhodnius prolixus harbouring R. rhodnii developed faster, had higher survival, and laid more eggs
0.01%
2.0
Micrococcus
RISB2276
Ostrinia nubilalis
Order: Lepidoptera
extreme cellulolytic enzymes, at extreme (pH 12) conditions, exhibited cellulolytic properties
0.01%
1.9
Xenorhabdus
RISB1372
Spodoptera frugiperda
Order: Lepidoptera
the products of the symbiont gene cluster inhibit Spodoptera frugiperda phenoloxidase activity
0.00%
1.9
Streptococcus
RISB2604
Homona magnanima
Order: Lepidoptera
influence the growth of Bacillus thuringiensis in the larvae
0.48%
1.7
Xenorhabdus
RISB2270
Acyrthosiphon pisum
Order: Hemiptera
have the gene PIN1 encoding the protease inhibitor protein against aphids
0.00%
1.5
Raoultella
RISB1672
Spodoptera frugiperda
Order: Lepidoptera
downregulated POX but upregulated trypsin PI in this plant species
0.00%
1.3
Massilia
RISB2151
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.02%
1.3
Duganella
RISB2152
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.00%
1.3
Dysgonomonas
RISB1235
Hermetia illucens
Order: Diptera
provides the tools for degrading of a broad range of substrates
0.00%
1.3
Actinomyces
RISB1234
Hermetia illucens
Order: Diptera
provides the tools for degrading of a broad range of substrates
0.00%
1.3
Komagataeibacter
RISB1883
Drosophila suzukii
Order: Diptera
produce volatile substances that attract female D. suzukii
0.00%
1.2
Dickeya
RISB1086
Rhodnius prolixus
Order: Hemiptera
supply enzymatic biosynthesis of B-complex vitamins
0.00%
1.0
Brevibacterium
RISB0464
Acrida cinerea
Order: Orthoptera
correlated with the hemicellulose digestibility
0.02%
1.0
Clavibacter
RISB0465
Trilophidia annulata
Order: Orthoptera
correlated with the hemicellulose digestibility
0.00%
0.9
Exiguobacterium
RISB0582
Aleurodicus rugioperculatus
Order: Hemiptera
may indirectly affect whitefly oviposition
0.00%
0.8
Aeromonas
RISB2456
Bombyx mori
Order: Lepidoptera
able to utilize the CMcellulose and xylan
0.01%
0.8
Nocardioides
RISB1914
Hyles euphorbiae
Order: Lepidoptera
able to degrade alkaloids and/or latex
0.06%
0.8
Brevibacterium
RISB2359
Bombyx mori
Order: Lepidoptera
producing lipase in a gut environment
0.02%
0.8
Curtobacterium
RISB1910
Hyles euphorbiae
Order: Lepidoptera
able to degrade alkaloids and/or latex
0.00%
0.8
Gordonia
RISB1912
Hyles euphorbiae
Order: Lepidoptera
able to degrade alkaloids and/or latex
0.00%
0.8
Methylobacter
RISB2053
Atractomorpha sinensis
Order: Orthoptera
associated with cellulolytic enzymes
0.00%
0.7
Cedecea
RISB1570
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.00%
0.7
Aeromonas
RISB2086
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.01%
0.6
Sphingobium
RISB1880
Aedes aegypti
Order: Diptera
gut microbiome
0.15%
0.4
Priestia
RISB0839
Helicoverpa armigera
Order: Lepidoptera
producing amylase
0.03%
0.4
Gilliamella
RISB0620
Spodoptera frugiperda
Order: Lepidoptera
degrade amygdalin
0.00%
0.3
Methylobacter
RISB2340
Saturniidae
Order: Lepidoptera
Nitrogen fixation
0.00%
0.3
Achromobacter
RISB1869
Aedes aegypti
Order: Diptera
gut microbiome
0.03%
0.3
Peribacillus
RISB1877
Aedes aegypti
Order: Diptera
gut microbiome
0.03%
0.3
Leucobacter
RISB1876
Aedes aegypti
Order: Diptera
gut microbiome
0.00%
0.3
Alcaligenes
RISB1871
Aedes aegypti
Order: Diptera
gut microbiome
0.00%
0.3
Achromobacter
RISB0383
Aphis gossypii
Order: Hemiptera
None
0.03%
0.0
Paraburkholderia
RISB0125
Physopelta gutta
Order: Hemiptera
None
0.03%
0.0
Micromonospora
RISB2033
Palomena viridissima
Order: Hemiptera
None
0.02%
0.0
Brevibacterium
RISB0897
Myzus persicae
Order: Hemiptera
None
0.02%
0.0
Ralstonia
RISB0243
Spodoptera frugiperda
Order: Lepidoptera
None
0.02%
0.0
Halomonas
RISB1374
Bemisia tabaci
Order: Hemiptera
None
0.01%
0.0
Methylorubrum
RISB0903
Myzus persicae
Order: Hemiptera
None
0.01%
0.0
Gilliamella
RISB1945
Apis cerana
Order: Hymenoptera
None
0.00%
0.0
Bifidobacterium
RISB1944
Apis cerana
Order: Hymenoptera
None
0.00%
0.0
Treponema
RISB0169
Reticulitermes flaviceps
Order: Blattodea
None
0.00%
0.0
Yersinia
RISB0407
Anaphes nitens
Order: Hymenoptera
None
0.00%
0.0
Curtobacterium
RISB0900
Myzus persicae
Order: Hemiptera
None
0.00%
0.0
Cedecea
RISB0504
Plutella xylostella
Order: Lepidoptera
None
0.00%
0.0
Legionella
RISB1687
Polyplax serrata
Order: Phthiraptera
None
0.00%
0.0
Neisseria
RISB0512
Plutella xylostella
Order: Lepidoptera
None
0.00%
0.0
Kaistia
RISB0829
Spodoptera frugiperda
Order: Lepidoptera
None
0.00%
0.0
Tistrella
RISB0270
Recilia dorsalis
Order: Hemiptera
None
0.00%
0.0
Vagococcus
RISB0042
Aldrichina grahami
Order: Diptera
None
0.00%
0.0
Metabacillus
RISB0902
Myzus persicae
Order: Hemiptera
None
0.00%
0.0
Selenomonas
RISB1305
Aphis gossypii
Order: Hemiptera
None
0.00%
0.0
Myroides
RISB0626
Musca altica
Order: Diptera
None
0.00%
0.0
Sediminibacterium
RISB0244
Spodoptera frugiperda
Order: Lepidoptera
None
0.00%
0.0
Helicobacter
RISB0662
Melanaphis bambusae
Order: Hemiptera
None
0.00%
0.0
Acidobacterium
RISB1136
Coptotermes
Order: Blattodea
None
0.00%
0.0

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR19201359
3.0 GB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table