SRR15276545 - Rhodnius prolixus
Basic Information
Run: SRR15276545
Assay Type: WGS
Bioproject: PRJNA744378
Biosample: SAMN20181661
Bytes: 1541844728
Center Name: GOETHE UNIVERSITY FRANKFURT AM MAIN/GERMANY
Sequencing Information
Instrument: Illumina NovaSeq 6000
Library Layout: PAIRED
Library Selection: RANDOM
Platform: ILLUMINA
Geographic Information
Country: Brazil
Continent: South America
Location Name: Brazil: Belo Horizonte
Latitude/Longitude: 19.92097 S 43.95264 W
Sample Information
Host: Rhodnius prolixus
Isolation: -
Biosample Model: MIMS.me,MIGS/MIMS/MIMARKS.host-associated
Collection Date: 2019-02
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB0336 |
Riptortus pedestris
Order: Hemiptera
|
can be utilized as a novel probiotic which increase the survival rate of insects
|
65.08% |
81.7
|
Enterococcus faecalis
Species-level Match
|
RISB0497 |
Cryptolestes ferrugineus
Order: Coleoptera
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
|
65.08% |
72.7
|
Enterococcus faecalis
Species-level Match
|
RISB1411 |
Bactrocera dorsalis
Order: Diptera
|
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
|
65.08% |
72.6
|
Serratia marcescens
Species-level Match
Host Order Match
Host Species Match
|
RISB0747 |
Rhodnius prolixus
Order: Hemiptera
|
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
|
0.04% |
39.7
|
Serratia marcescens
Species-level Match
Host Order Match
Host Species Match
|
RISB1369 |
Rhodnius prolixus
Order: Hemiptera
|
None
|
0.04% |
35.0
|
Dickeya
Host Order Match
Host Species Match
|
RISB1086 |
Rhodnius prolixus
Order: Hemiptera
|
supply enzymatic biosynthesis of B-complex vitamins
|
0.12% |
31.1
|
Curtobacterium
Host Order Match
|
RISB0900 |
Myzus persicae
Order: Hemiptera
|
None
|
20.70% |
30.7
|
Curtobacterium
|
RISB1910 |
Hyles euphorbiae
Order: Lepidoptera
|
able to degrade alkaloids and/or latex
|
20.70% |
21.5
|
Symbiopectobacterium
Host Order Match
|
RISB1889 |
Pseudococcus longispinus
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
7.39% |
20.7
|
Serratia symbiotica
Species-level Match
Host Order Match
|
RISB0576 |
Acyrthosiphon pisum
Order: Hemiptera
|
process of regression from winged to wingless morph was inhibited by Serratia symbiotica. The existence of the symbiont did not affect the body mass and fecundity of adult aphids, but it increased the body weight of nymphs and temporally increased the quantity of a primary symbiont, Buchnera aphidicola
|
0.05% |
20.1
|
Pantoea sp. CCBC3-3-1
Species-level Match
Host Order Match
|
RISB0118 |
Nezara viridula
Order: Hemiptera
|
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies;transmitted bacteria impacted plant chemical defenses and were able to degrade toxic plant metabolites, aiding the shield bug in its nutrition
|
0.02% |
20.0
|
Buchnera aphidicola
Species-level Match
Host Order Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
0.01% |
20.0
|
Buchnera aphidicola
Species-level Match
Host Order Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
0.01% |
19.8
|
Clostridium sp. AWRP
Species-level Match
Host Order Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.00% |
19.2
|
Buchnera aphidicola
Species-level Match
Host Order Match
|
RISB0685 |
Acyrthosiphon pisum
Order: Hemiptera
|
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
|
0.01% |
18.8
|
Pantoea sp. CCBC3-3-1
Species-level Match
Host Order Match
|
RISB0119 |
Nezara viridula
Order: Hemiptera
|
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies.
|
0.02% |
18.6
|
Sodalis praecaptivus
Species-level Match
Host Order Match
|
RISB0122 |
Nezara viridula
Order: Hemiptera
|
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies.
|
0.00% |
18.6
|
Pantoea sp. CCBC3-3-1
Species-level Match
Host Order Match
|
RISB1491 |
Nezara viridula
Order: Hemiptera
|
help stinkbugs to feed on soybean developing seeds in spite of its chemical defenses by degrading isoflavonoids and deactivate soybean protease inhibitors
|
0.02% |
18.1
|
Klebsiella electrica
Species-level Match
Host Order Match
|
RISB0193 |
Recilia dorsalis
Order: Hemiptera
|
nitrogen-fixing bacterium, R. electrica has all the nitrogen fixation genes and colonizes the gut lumen of leafhoppers
|
0.00% |
17.4
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB0337 |
Riptortus pedestris
Order: Hemiptera
|
can be utilized as a novel probiotic which increase the survival rate of insects
|
0.02% |
16.6
|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB0700 |
Nilaparvata lugens
Order: Hemiptera
|
Pseudomonas sp. composition and abundance correlated with BPH survivability
|
0.01% |
16.5
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB0412 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
0.33% |
15.3
|
Salmonella enterica
Species-level Match
Host Order Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
0.13% |
15.1
|
Agrobacterium tumefaciens
Species-level Match
Host Order Match
|
RISB0650 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.02% |
15.0
|
Candidatus Erwinia haradaeae
Species-level Match
Host Order Match
|
RISB1632 |
Lachninae
Order: Hemiptera
|
None
|
0.01% |
15.0
|
Burkholderia
Host Order Match
|
RISB1327 |
Riptortus pedestris
Order: Hemiptera
|
fed with specific nutrients and also recycles host metabolic wastes in the insect gut, and in return, the bacterial symbiont provides the host with essential nutrients limited in the insect food, contributing to the rapid growth and enhanced reproduction of the bean bug host.
|
0.01% |
15.0
|
Burkholderia
Host Order Match
|
RISB0402 |
Riptortus pedestris
Order: Hemiptera
|
symbiont colonization induces the development of the midgut crypts via finely regulating the enterocyte cell cycles, enabling it to stably and abundantly colonize the generated spacious crypts of the bean bug host
|
0.01% |
14.3
|
Burkholderia
Host Order Match
|
RISB0221 |
Riptortus pedestris
Order: Hemiptera
|
symbiont modulates Kr-h1 expression to enhance ovarian development and egg production of R. pedestris by increasing the biosynthesis of the two reproduction-associated proteins, hexamerin-α and vitellogenin
|
0.01% |
14.1
|
Wolbachia
Host Order Match
|
RISB1444 |
Laodelphax striatellus
Order: Hemiptera
|
Wolbachia-infected host embryonic development genes revealed Ddx1 mRNAs, which is required for host viability and in the germ line, accumulated in the posterior region of 3-day-old embryos
|
0.10% |
13.9
|
Wolbachia
Host Order Match
|
RISB1539 |
Cimex lectularius
Order: Hemiptera
|
wCle provisions the bed bug with B vitamins.It is likely that because of wCle’s nutritional contribution to the bed bug, its titer increases in relation to bed bug growth and development.
|
0.10% |
13.8
|
Wolbachia
Host Order Match
|
RISB0491 |
Cimex hemipterus
Order: Hemiptera
|
the disruption of the abundant Wolbachia could be related to the enhanced susceptibility towards the insecticides
|
0.10% |
12.4
|
Sphingomonas
Host Order Match
|
RISB0420 |
Aphis gossypii
Order: Hemiptera
|
Sphingomonas could mediate A. gossypii resistance to imidacloprid by hydroxylation and nitroreduction
|
0.01% |
12.0
|
Sphingomonas
Host Order Match
|
RISB1307 |
Aphis gossypii
Order: Hemiptera
|
have been previously described in associations with phloem-feeding insects, in low abundances
|
0.01% |
11.9
|
Xenorhabdus
Host Order Match
|
RISB2270 |
Acyrthosiphon pisum
Order: Hemiptera
|
have the gene PIN1 encoding the protease inhibitor protein against aphids
|
0.02% |
11.5
|
Klebsiella pneumoniae
Species-level Match
|
RISB2185 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.25% |
10.3
|
Listeria monocytogenes
Species-level Match
|
RISB2308 |
Drosophila melanogaster
Order: Diptera
|
L. monocytogenes infection disrupts host energy metabolism by depleting energy stores (triglycerides and glycogen) and reducing metabolic pathway activity (beta-oxidation and glycolysis). The infection affects antioxidant defense by reducing uric acid levels and alters amino acid metabolism. These metabolic changes are accompanied by melanization, potentially linked to decreased tyrosine levels.
|
0.09% |
10.1
|
Lactococcus lactis
Species-level Match
|
RISB0131 |
Ceratitis capitata
Order: Diptera
|
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
|
0.02% |
10.0
|
Bacillus thuringiensis
Species-level Match
|
RISB2177 |
Armadillidae
Order: Isopoda
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.02% |
10.0
|
Flavobacterium
Host Order Match
|
RISB0659 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.02% |
10.0
|
Sphingomonas
Host Order Match
|
RISB0167 |
Pseudoregma bambucicola
Order: Hemiptera
|
None
|
0.01% |
10.0
|
Aeromonas
Host Order Match
|
RISB2063 |
Sitobion miscanthi
Order: Hemiptera
|
None
|
0.01% |
10.0
|
Paraburkholderia
Host Order Match
|
RISB0125 |
Physopelta gutta
Order: Hemiptera
|
None
|
0.01% |
10.0
|
Cupriavidus
Host Order Match
|
RISB0694 |
Alydus tomentosus
Order: Hemiptera
|
None
|
0.01% |
10.0
|
Chryseobacterium
Host Order Match
|
RISB0652 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.01% |
10.0
|
Klebsiella oxytoca
Species-level Match
|
RISB0130 |
Ceratitis capitata
Order: Diptera
|
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
|
0.00% |
10.0
|
Enterobacter sp. RHBSTW-00175
Species-level Match
|
RISB0893 |
Bactrocera dorsalis
Order: Diptera
|
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
|
0.00% |
10.0
|
Helicobacter
Host Order Match
|
RISB0662 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.00% |
10.0
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.01% |
9.8
|
Bacillus thuringiensis
Species-level Match
|
RISB0109 |
Tuta absoluta
Order: Lepidoptera
|
Individual exposure of B. thuringiensis isolates to P. absoluta revealed high susceptibility of the pest and could potentially be used to develop effective, safe and affordable microbial pesticides for the management of P. absoluta.
|
0.02% |
9.7
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
0.33% |
9.7
|
Enterobacter sp. RHBSTW-00175
Species-level Match
|
RISB1338 |
Ceratitis capitata
Order: Diptera
|
Enterobacter sp. AA26 dry biomass can fully replace the brewer’s yeast as a protein source in medfly larval diet without any effect on the productivity and the biological quality of reared medfly of VIENNA 8 GSS
|
0.00% |
9.2
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1122 |
Bombyx mori
Order: Lepidoptera
|
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
|
0.01% |
9.0
|
Bacillus cereus
Species-level Match
|
RISB2489 |
Anticarsia gemmatalis
Order: Lepidoptera
|
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
|
0.02% |
9.0
|
Streptomyces sp. NBC_00162
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.02% |
9.0
|
Streptomyces sp. T12
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.01% |
9.0
|
Streptomyces sp. NBC_01217
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.00% |
9.0
|
Enterobacter ludwigii
Species-level Match
|
RISB1543 |
Helicoverpa zea
Order: Lepidoptera
|
two immunity-related genes glucose oxidase (GOX) and lysozyme (LYZ) were more highly expressed in both salivary glands and midguts compared with MgCl2 solution-treated caterpillars
|
0.01% |
8.6
|
Candidatus Sodalis pierantonius
Species-level Match
|
RISB2035 |
Sitophilus oryzae
Order: Coleoptera
|
endosymbiont dynamics parallels numerous transcriptional changes in weevil developing adults and affects several biological processes, including metabolism and development
|
0.16% |
8.6
|
Lactococcus lactis
Species-level Match
|
RISB0967 |
Oulema melanopus
Order: Coleoptera
|
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
|
0.02% |
8.6
|
Citrobacter amalonaticus
Species-level Match
|
RISB0192 |
Hermetia illucens
Order: Diptera
|
can directly promote the expression of two gene families related to intestinal protein metabolism: Hitryp serine protease trypsin family and Himtp metallopeptidase family
|
0.02% |
8.4
|
Lactobacillus sp. ESL0677
Species-level Match
|
RISB0292 |
Lymantria dispar asiatica
Order: Lepidoptera
|
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
|
0.00% |
8.4
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB2224 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.01% |
8.4
|
Morganella morganii
Species-level Match
|
RISB0772 |
Delia antiqua
Order: Diptera
|
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.01% |
8.3
|
Paenibacillus sp. FSL R7-0273
Species-level Match
|
RISB0774 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.01% |
8.3
|
Exiguobacterium sp. N4-1P
Species-level Match
|
RISB0007 |
Phormia regina
Order: Diptera
|
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
0.50% |
8.2
|
Escherichia coli
Species-level Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
0.33% |
8.1
|
Citrobacter freundii
Species-level Match
|
RISB0517 |
Leptinotarsa decemlineata
Order: Coleoptera
|
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
|
0.10% |
8.0
|
Morganella morganii
Species-level Match
|
RISB0008 |
Phormia regina
Order: Diptera
|
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
0.01% |
8.0
|
Sodalis praecaptivus
Species-level Match
|
RISB1718 |
Sitophilus zeamais
Order: Coleoptera
|
we investigated the role of a quorum sensing(QS ) system in S. praecaptivus and found that it negatively regulates a potent insect-killing phenotype
|
0.00% |
8.0
|
Blattabacterium cuenoti
Species-level Match
|
RISB0133 |
Panesthiinae
Order: Blattodea
|
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
|
0.01% |
8.0
|
Citrobacter freundii complex sp. CFNIH2
Species-level Match
|
RISB0517 |
Leptinotarsa decemlineata
Order: Coleoptera
|
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
|
0.00% |
7.9
|
Morganella morganii
Species-level Match
|
RISB1867 |
Costelytra zealandica
Order: Coleoptera
|
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
|
0.01% |
7.9
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1227 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.01% |
7.7
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1141 |
Hermetia illucens
Order: Diptera
|
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
|
0.01% |
6.8
|
Kosakonia sp. SMBL-WEM22
Species-level Match
|
RISB0810 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-16 oxidation pathway
|
0.03% |
6.5
|
Erwinia sp. HDF1-3R
Species-level Match
|
RISB0808 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-12 oxidation pathway
|
0.01% |
6.4
|
Kosakonia sp. MUSA4
Species-level Match
|
RISB0810 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-16 oxidation pathway
|
0.00% |
6.4
|
Paenibacillus sp. FSL R7-0273
Species-level Match
|
RISB0813 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-9 oxidation pathway
|
0.01% |
6.4
|
Exiguobacterium sp. N4-1P
Species-level Match
|
RISB1152 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.50% |
5.9
|
Blattabacterium cuenoti
Species-level Match
|
RISB0518 |
Cryptocercus punctulatus
Order: Blattodea
|
collaborative arginine biosynthesis
|
0.01% |
5.7
|
Erwinia sp. HDF1-3R
Species-level Match
|
RISB1986 |
Bombyx mori
Order: Lepidoptera
|
producing cellulase and amylase
|
0.01% |
5.6
|
Paenibacillus sp. FSL R7-0273
Species-level Match
|
RISB2098 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.01% |
5.6
|
Blattabacterium cuenoti
Species-level Match
|
RISB0093 |
Blattella germanica
Order: Blattodea
|
obligate endosymbiont
|
0.01% |
5.4
|
Rhodococcus ruber
Species-level Match
|
RISB1157 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.02% |
5.4
|
Arsenophonus nasoniae
Species-level Match
|
RISB0428 |
Nasonia vitripennis
Order: Hymenoptera
|
male killing
|
0.05% |
5.3
|
Staphylococcus epidermidis
Species-level Match
|
RISB1070 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.00% |
5.2
|
Arsenophonus nasoniae
Species-level Match
|
RISB0366 |
Pachycrepoideus vindemmiae
Order: Hymenoptera
|
None
|
0.05% |
5.1
|
Pseudocitrobacter corydidari
Species-level Match
|
RISB0696 |
Corydidarum magnifica
Order: Blattodea
|
None
|
0.01% |
5.0
|
Pectobacterium carotovorum
Species-level Match
|
RISB1772 |
Muscidae
Order: Diptera
|
None
|
0.01% |
5.0
|
Yersinia massiliensis
Species-level Match
|
RISB0407 |
Anaphes nitens
Order: Hymenoptera
|
None
|
0.01% |
5.0
|
Rahnella
|
RISB1623 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.00% |
4.8
|
Xanthomonas
|
RISB0498 |
Xylocopa appendiculata
Order: Hymenoptera
|
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
|
0.01% |
3.8
|
Photorhabdus
|
RISB2532 |
Manduca sexta
Order: Lepidoptera
|
produces a small-molecule antibiotic (E)-1,3-dihydroxy-2-(isopropyl)-5-(2-phenylethenyl)benzene (ST) that also acts as an inhibitor of phenoloxidase (PO) in the insect host Manduca sexta.
|
0.00% |
3.7
|
Raoultella
|
RISB2226 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.01% |
3.4
|
Tsukamurella
|
RISB1531 |
Hoplothrips carpathicus
Order: Thysanoptera
|
This genus was identified as dominant in intensively feeding second-stage larvae and suggests a mechanism by which L2 larvae might process cellulose.
|
0.00% |
3.0
|
Photorhabdus
|
RISB2573 |
Manduca sexta
Order: Lepidoptera
|
the bacteria are symbiotic with entomopathogenic nematodes but become pathogenic on release from the nematode into the insect blood system
|
0.00% |
2.8
|
Proteus
|
RISB0001 |
Leptinotarsa decemlineata
Order: Coleoptera
|
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
|
0.00% |
2.7
|
Nocardia
|
RISB0947 |
Acromyrmex
Order: Hymenoptera
|
Pseudonocardia in the Acromyrmex leaf-cutter ants as a protective partner against the entomopathogenic fungus Metarhizium
|
0.10% |
2.5
|
Rahnella
|
RISB1800 |
Dendroctonus valens
Order: Coleoptera
|
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth
|
0.00% |
2.2
|
Nocardia
|
RISB1218 |
Mycocepurus smithii
Order: Hymenoptera
|
produce secondary metabolites with antibiotic activity that protects the fungus garden against pathogens
|
0.10% |
2.2
|
Blautia
|
RISB0091 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.01% |
2.1
|
Proteus
|
RISB2315 |
Aedes aegypti
Order: Diptera
|
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
|
0.00% |
2.1
|
Rahnella
|
RISB0741 |
Dendroctonus ponderosae
Order: Coleoptera
|
R. aquatilis decreased (−)-α-pinene (38%) and (+)-α-pinene (46%) by 40% and 45% (by GC-MS), respectively
|
0.00% |
2.1
|
Xanthomonas
|
RISB0217 |
Xylocopa appendiculata
Order: Hymenoptera
|
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
|
0.01% |
2.0
|
Xenorhabdus
|
RISB1372 |
Spodoptera frugiperda
Order: Lepidoptera
|
the products of the symbiont gene cluster inhibit Spodoptera frugiperda phenoloxidase activity
|
0.02% |
1.9
|
Corynebacterium
|
RISB0363 |
Pagiophloeus tsushimanus
Order: Coleoptera
|
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
|
0.01% |
1.8
|
Corynebacterium
|
RISB0531 |
Helicoverpa armigera
Order: Lepidoptera
|
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
|
0.01% |
1.7
|
Rhizobium
|
RISB0135 |
Coccinella septempunctata
Order: Coleoptera
|
be commonly found in plant roots and they all have nitrogen fixation abilities
|
0.01% |
1.6
|
Vibrio
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.03% |
1.4
|
Raoultella
|
RISB1672 |
Spodoptera frugiperda
Order: Lepidoptera
|
downregulated POX but upregulated trypsin PI in this plant species
|
0.01% |
1.3
|
Photorhabdus
|
RISB0532 |
Drosophila melanogaster
Order: Diptera
|
produces toxin complex (Tc) toxins as major virulence factors
|
0.00% |
1.2
|
Raoultella
|
RISB1007 |
Monochamus alternatus
Order: Coleoptera
|
may help M. alternatus degrade cellulose and pinene
|
0.01% |
1.0
|
Proteus
|
RISB2460 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
0.00% |
1.0
|
Cronobacter
|
RISB0247 |
Tenebrio molitor
Order: Coleoptera
|
may be indirectly involved in the digestion of PE
|
0.00% |
1.0
|
Aeromonas
|
RISB2456 |
Bombyx mori
Order: Lepidoptera
|
able to utilize the CMcellulose and xylan
|
0.01% |
0.8
|
Gordonia
|
RISB1912 |
Hyles euphorbiae
Order: Lepidoptera
|
able to degrade alkaloids and/or latex
|
0.05% |
0.8
|
Corynebacterium
|
RISB2360 |
Bombyx mori
Order: Lepidoptera
|
producing lipase in a gut environment
|
0.01% |
0.8
|
Cedecea
|
RISB1570 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
0.01% |
0.7
|
Aeromonas
|
RISB2086 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.01% |
0.6
|
Chryseobacterium
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.01% |
0.6
|
Priestia
|
RISB0839 |
Helicoverpa armigera
Order: Lepidoptera
|
producing amylase
|
0.01% |
0.4
|
Chryseobacterium
|
RISB1874 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.01% |
0.3
|
Kluyvera
|
RISB1064 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.01% |
0.2
|
Cedecea
|
RISB0504 |
Plutella xylostella
Order: Lepidoptera
|
None
|
0.01% |
0.0
|
Lonsdalea
|
RISB1321 |
Vespa mandarinia
Order: Hymenoptera
|
None
|
0.00% |
0.0
|
Gibbsiella
|
RISB1320 |
Vespa mandarinia
Order: Hymenoptera
|
None
|
0.00% |
0.0
|
Legionella
|
RISB1687 |
Polyplax serrata
Order: Phthiraptera
|
None
|
0.00% |
0.0
|
Neisseria
|
RISB0512 |
Plutella xylostella
Order: Lepidoptera
|
None
|
0.00% |
0.0
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.