SRR15276525 - Rhodnius prolixus
Basic Information
Run: SRR15276525
Assay Type: WGS
Bioproject: PRJNA744378
Biosample: SAMN20181645
Bytes: 990394442
Center Name: GOETHE UNIVERSITY FRANKFURT AM MAIN/GERMANY
Sequencing Information
Instrument: Illumina NovaSeq 6000
Library Layout: PAIRED
Library Selection: RANDOM
Platform: ILLUMINA
Geographic Information
Country: Brazil
Continent: South America
Location Name: Brazil: Belo Horizonte
Latitude/Longitude: 19.92097 S 43.95264 W
Sample Information
Host: Rhodnius prolixus
Isolation: -
Biosample Model: MIMS.me,MIGS/MIMS/MIMARKS.host-associated
Collection Date: 2019-02
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB0336 |
Riptortus pedestris
Order: Hemiptera
|
can be utilized as a novel probiotic which increase the survival rate of insects
|
30.77% |
47.4
|
Serratia marcescens
Species-level Match
Host Order Match
Host Species Match
|
RISB0747 |
Rhodnius prolixus
Order: Hemiptera
|
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
|
0.04% |
39.7
|
Enterococcus faecalis
Species-level Match
|
RISB0497 |
Cryptolestes ferrugineus
Order: Coleoptera
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
|
30.77% |
38.4
|
Enterococcus faecalis
Species-level Match
|
RISB1411 |
Bactrocera dorsalis
Order: Diptera
|
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
|
30.77% |
38.3
|
Serratia marcescens
Species-level Match
Host Order Match
Host Species Match
|
RISB1369 |
Rhodnius prolixus
Order: Hemiptera
|
None
|
0.04% |
35.0
|
Curtobacterium
Host Order Match
|
RISB0900 |
Myzus persicae
Order: Hemiptera
|
None
|
23.06% |
33.1
|
Dickeya
Host Order Match
Host Species Match
|
RISB1086 |
Rhodnius prolixus
Order: Hemiptera
|
supply enzymatic biosynthesis of B-complex vitamins
|
0.04% |
31.1
|
Curtobacterium
|
RISB1910 |
Hyles euphorbiae
Order: Lepidoptera
|
able to degrade alkaloids and/or latex
|
23.06% |
23.8
|
Buchnera aphidicola
Species-level Match
Host Order Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
0.06% |
20.1
|
Serratia marcescens
Species-level Match
Host Order Match
|
RISB0120 |
Nezara viridula
Order: Hemiptera
|
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies;transmitted bacteria impacted plant chemical defenses and were able to degrade toxic plant metabolites, aiding the shield bug in its nutrition
|
0.04% |
20.0
|
Buchnera aphidicola
Species-level Match
Host Order Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
0.06% |
19.8
|
Clostridium sp. OS1-26
Species-level Match
Host Order Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.02% |
19.2
|
Buchnera aphidicola
Species-level Match
Host Order Match
|
RISB0685 |
Acyrthosiphon pisum
Order: Hemiptera
|
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
|
0.06% |
18.9
|
Symbiopectobacterium
Host Order Match
|
RISB1889 |
Pseudococcus longispinus
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
4.49% |
17.8
|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB0700 |
Nilaparvata lugens
Order: Hemiptera
|
Pseudomonas sp. composition and abundance correlated with BPH survivability
|
0.16% |
16.7
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB0412 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
0.45% |
15.5
|
Salmonella enterica
Species-level Match
Host Order Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
0.16% |
15.2
|
Candidatus Erwinia haradaeae
Species-level Match
Host Order Match
|
RISB1632 |
Lachninae
Order: Hemiptera
|
None
|
0.10% |
15.1
|
Pantoea agglomerans
Species-level Match
Host Order Match
|
RISB2357 |
Daktulosphaira vitifoliae
Order: Hemiptera
|
None
|
0.07% |
15.1
|
Burkholderia
Host Order Match
|
RISB1327 |
Riptortus pedestris
Order: Hemiptera
|
fed with specific nutrients and also recycles host metabolic wastes in the insect gut, and in return, the bacterial symbiont provides the host with essential nutrients limited in the insect food, contributing to the rapid growth and enhanced reproduction of the bean bug host.
|
0.06% |
15.1
|
Burkholderia
Host Order Match
|
RISB0402 |
Riptortus pedestris
Order: Hemiptera
|
symbiont colonization induces the development of the midgut crypts via finely regulating the enterocyte cell cycles, enabling it to stably and abundantly colonize the generated spacious crypts of the bean bug host
|
0.06% |
14.3
|
Lactococcus
Host Order Match
|
RISB2305 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.05% |
14.3
|
Burkholderia
Host Order Match
|
RISB0221 |
Riptortus pedestris
Order: Hemiptera
|
symbiont modulates Kr-h1 expression to enhance ovarian development and egg production of R. pedestris by increasing the biosynthesis of the two reproduction-associated proteins, hexamerin-α and vitellogenin
|
0.06% |
14.2
|
Pectobacterium
Host Order Match
|
RISB1889 |
Pseudococcus longispinus
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.28% |
13.6
|
Sphingomonas
Host Order Match
|
RISB0420 |
Aphis gossypii
Order: Hemiptera
|
Sphingomonas could mediate A. gossypii resistance to imidacloprid by hydroxylation and nitroreduction
|
0.05% |
12.1
|
Sphingomonas
Host Order Match
|
RISB1307 |
Aphis gossypii
Order: Hemiptera
|
have been previously described in associations with phloem-feeding insects, in low abundances
|
0.05% |
11.9
|
Lactococcus
Host Order Match
|
RISB0337 |
Riptortus pedestris
Order: Hemiptera
|
can be utilized as a novel probiotic which increase the survival rate of insects
|
0.05% |
11.7
|
Pectobacterium
Host Order Match
|
RISB0798 |
Pseudoregma bambucicola
Order: Hemiptera
|
may help P. bambucicola feed on the stalks of bamboo
|
0.28% |
11.3
|
Arthrobacter
Host Order Match
|
RISB0580 |
Aleurodicus rugioperculatus
Order: Hemiptera
|
may indirectly affect whitefly oviposition
|
0.05% |
10.9
|
Klebsiella pneumoniae
Species-level Match
|
RISB2185 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.21% |
10.2
|
Bacillus cereus
Species-level Match
|
RISB2161 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.13% |
10.1
|
Micromonospora
Host Order Match
|
RISB2033 |
Palomena viridissima
Order: Hemiptera
|
None
|
0.12% |
10.1
|
Bacillus thuringiensis
Species-level Match
|
RISB2177 |
Armadillidae
Order: Isopoda
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.11% |
10.1
|
Staphylococcus
Host Order Match
|
RISB0672 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.10% |
10.1
|
Pantoea agglomerans
Species-level Match
|
RISB2197 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.07% |
10.1
|
Brevibacterium
Host Order Match
|
RISB0897 |
Myzus persicae
Order: Hemiptera
|
None
|
0.06% |
10.1
|
Sphingomonas
Host Order Match
|
RISB0167 |
Pseudoregma bambucicola
Order: Hemiptera
|
None
|
0.05% |
10.1
|
Cupriavidus
Host Order Match
|
RISB0694 |
Alydus tomentosus
Order: Hemiptera
|
None
|
0.05% |
10.1
|
Listeria monocytogenes
Species-level Match
|
RISB2308 |
Drosophila melanogaster
Order: Diptera
|
L. monocytogenes infection disrupts host energy metabolism by depleting energy stores (triglycerides and glycogen) and reducing metabolic pathway activity (beta-oxidation and glycolysis). The infection affects antioxidant defense by reducing uric acid levels and alters amino acid metabolism. These metabolic changes are accompanied by melanization, potentially linked to decreased tyrosine levels.
|
0.04% |
10.0
|
Chryseobacterium
Host Order Match
|
RISB0652 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.04% |
10.0
|
Microbacterium oleivorans
Species-level Match
|
RISB2194 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.02% |
10.0
|
Wolbachia pipientis
Species-level Match
|
RISB0766 |
Aedes fluviatilis
Order: Diptera
|
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
|
0.02% |
10.0
|
Paraburkholderia
Host Order Match
|
RISB0125 |
Physopelta gutta
Order: Hemiptera
|
None
|
0.02% |
10.0
|
Helicobacter
Host Order Match
|
RISB0662 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.01% |
10.0
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.16% |
10.0
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
0.45% |
9.8
|
Bacillus thuringiensis
Species-level Match
|
RISB0109 |
Tuta absoluta
Order: Lepidoptera
|
Individual exposure of B. thuringiensis isolates to P. absoluta revealed high susceptibility of the pest and could potentially be used to develop effective, safe and affordable microbial pesticides for the management of P. absoluta.
|
0.11% |
9.8
|
Streptomyces sp. WAC00303
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.36% |
9.3
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1122 |
Bombyx mori
Order: Lepidoptera
|
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
|
0.12% |
9.1
|
Streptomyces sp. T12
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.12% |
9.1
|
Streptomyces sp. WAC00303
Species-level Match
|
RISB2334 |
Sirex noctilio
Order: Hymenoptera
|
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
|
0.36% |
9.1
|
Klebsiella michiganensis
Species-level Match
|
RISB1052 |
Bactrocera dorsalis
Order: Diptera
|
K. michiganensis BD177 has the strain-specific ability to provide three essential amino acids (phenylalanine, tryptophan and methionine) and two vitamins B (folate and riboflavin) to B. dorsalis
|
0.05% |
8.9
|
Candidatus Sodalis pierantonius
Species-level Match
|
RISB2035 |
Sitophilus oryzae
Order: Coleoptera
|
endosymbiont dynamics parallels numerous transcriptional changes in weevil developing adults and affects several biological processes, including metabolism and development
|
0.11% |
8.5
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB2224 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.16% |
8.5
|
Sphingobacterium sp. LZ7M1
Species-level Match
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.03% |
8.4
|
Morganella morganii
Species-level Match
|
RISB0772 |
Delia antiqua
Order: Diptera
|
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.03% |
8.3
|
Escherichia coli
Species-level Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
0.45% |
8.2
|
Morganella morganii
Species-level Match
|
RISB0008 |
Phormia regina
Order: Diptera
|
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
0.03% |
8.0
|
Citrobacter freundii
Species-level Match
|
RISB0517 |
Leptinotarsa decemlineata
Order: Coleoptera
|
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
|
0.09% |
8.0
|
Blattabacterium cuenoti
Species-level Match
|
RISB0133 |
Panesthiinae
Order: Blattodea
|
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
|
0.03% |
8.0
|
Exiguobacterium sp. N4-1P
Species-level Match
|
RISB0007 |
Phormia regina
Order: Diptera
|
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
0.26% |
7.9
|
Morganella morganii
Species-level Match
|
RISB1867 |
Costelytra zealandica
Order: Coleoptera
|
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
|
0.03% |
7.9
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1227 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.12% |
7.8
|
Klebsiella michiganensis
Species-level Match
|
RISB1131 |
Bactrocera dorsalis
Order: Diptera
|
promotes host resistance to low-temperature stress by stimulating its arginine and proline metabolism pathway in adult Bactrocera dorsalis
|
0.05% |
7.8
|
Citrobacter freundii
Species-level Match
|
RISB0127 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
0.09% |
7.8
|
Sodalis glossinidius
Species-level Match
|
RISB2256 |
Glossina palpalis
Order: Diptera
|
flies harbouring this symbiont have three times greater probability of being infected by trypanosomes than flies without the symbiont.
|
0.12% |
7.8
|
Citrobacter freundii
Species-level Match
|
RISB1221 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.09% |
7.8
|
Enterobacter cloacae
Species-level Match
|
RISB1699 |
Plutella xylostella
Order: Lepidoptera
|
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
|
0.16% |
7.7
|
Wolbachia pipientis
Species-level Match
|
RISB1515 |
Drosophila melanogaster
Order: Diptera
|
increases the recombination rate observed across two genomic intervals and increases the efficacy of natural selection in hosts
|
0.02% |
7.6
|
Enterobacter cloacae
Species-level Match
|
RISB2217 |
Thermobia domestica
Order: Zygentoma
|
Mediated by two microbial symbiont, the firebat saggregates in response to the faeces of conspecifics
|
0.16% |
7.2
|
Pantoea agglomerans
Species-level Match
|
RISB2579 |
Schistocerca gregaria
Order: Orthoptera
|
produces an antifungal and antibacterial molecule serving as antimicrobial defense against gut pathogens
|
0.07% |
7.2
|
Candidatus Sodalis pierantonius
Species-level Match
|
RISB0972 |
Sitophilus oryzae
Order: Coleoptera
|
produce vitamins and essential amino acids required for insect development and cuticle biosynthesis
|
0.11% |
7.1
|
Enterobacter cloacae
Species-level Match
|
RISB1428 |
Rhynchophorus ferrugineus
Order: Coleoptera
|
promote the development and body mass gain of RPW larvae by improving their nutrition metabolism
|
0.16% |
7.1
|
Wolbachia pipientis
Species-level Match
|
RISB1354 |
Drosophila melanogaster
Order: Diptera
|
Wolbachia influence octopamine metabolism in the Drosophila females, which is by the symbiont genotype
|
0.02% |
7.1
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1141 |
Hermetia illucens
Order: Diptera
|
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
|
0.12% |
6.9
|
Micrococcus sp. 2A
Species-level Match
|
RISB2276 |
Ostrinia nubilalis
Order: Lepidoptera
|
extreme cellulolytic enzymes, at extreme (pH 12) conditions, exhibited cellulolytic properties
|
0.03% |
6.9
|
Corynebacterium variabile
Species-level Match
|
RISB0363 |
Pagiophloeus tsushimanus
Order: Coleoptera
|
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
|
0.04% |
6.8
|
Kosakonia sp. SMBL-WEM22
Species-level Match
|
RISB0810 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-16 oxidation pathway
|
0.02% |
6.4
|
Lysinibacillus fusiformis
Species-level Match
|
RISB1417 |
Psammotermes hypostoma
Order: Blattodea
|
isolates showed significant cellulolytic activity
|
0.02% |
6.0
|
Rhodococcus ruber
Species-level Match
|
RISB1157 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.50% |
5.9
|
Microbacterium hominis
Species-level Match
|
RISB1997 |
Diatraea saccharalis
Order: Lepidoptera
|
possess cellulose degrading activity
|
0.11% |
5.8
|
Nocardia
|
RISB0947 |
Acromyrmex
Order: Hymenoptera
|
Pseudonocardia in the Acromyrmex leaf-cutter ants as a protective partner against the entomopathogenic fungus Metarhizium
|
3.34% |
5.8
|
Blattabacterium cuenoti
Species-level Match
|
RISB0518 |
Cryptocercus punctulatus
Order: Blattodea
|
collaborative arginine biosynthesis
|
0.03% |
5.7
|
Microbacterium oxydans
Species-level Match
|
RISB0878 |
Galleria mellonella
Order: Lepidoptera
|
biodegradation of Polyethylene
|
0.03% |
5.6
|
Exiguobacterium sp. N4-1P
Species-level Match
|
RISB1152 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.26% |
5.6
|
Blattabacterium cuenoti
Species-level Match
|
RISB0093 |
Blattella germanica
Order: Blattodea
|
obligate endosymbiont
|
0.03% |
5.5
|
Nocardia
|
RISB1218 |
Mycocepurus smithii
Order: Hymenoptera
|
produce secondary metabolites with antibiotic activity that protects the fungus garden against pathogens
|
3.34% |
5.4
|
Arsenophonus nasoniae
Species-level Match
|
RISB0428 |
Nasonia vitripennis
Order: Hymenoptera
|
male killing
|
0.04% |
5.3
|
Lysinibacillus fusiformis
Species-level Match
|
RISB1066 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.02% |
5.2
|
Staphylococcus
|
RISB0945 |
Callosobruchus maculatus
Order: Coleoptera
|
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
|
0.10% |
5.1
|
Cellulosimicrobium
|
RISB2182 |
Armadillidae
Order: Isopoda
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.06% |
5.1
|
Lactococcus
|
RISB0131 |
Ceratitis capitata
Order: Diptera
|
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
|
0.05% |
5.1
|
Arsenophonus nasoniae
Species-level Match
|
RISB0366 |
Pachycrepoideus vindemmiae
Order: Hymenoptera
|
None
|
0.04% |
5.0
|
Lactobacillus apis
Species-level Match
|
RISB1556 |
Apis florea
Order: Hymenoptera
|
None
|
0.02% |
5.0
|
Staphylococcus
|
RISB2497 |
Anticarsia gemmatalis
Order: Lepidoptera
|
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
|
0.10% |
4.1
|
Amycolatopsis
|
RISB0483 |
Trachymyrmex smithi
Order: Hymenoptera
|
inhibited the growth of Pseudonocardia symbionts under laboratory conditions. The novel analog nocamycin V from the strain was identified as the antibacterial compound
|
0.46% |
3.8
|
Amycolatopsis
|
RISB0199 |
Trachymyrmex
Order: Hymenoptera
|
produce antibiotic EC0-0501 that has strong activity against ant-associated Actinobacteria and may also play a role in bacterial competition in this niche
|
0.46% |
3.5
|
Arthrobacter
|
RISB0769 |
Delia antiqua
Order: Diptera
|
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.05% |
3.3
|
Leucobacter
|
RISB0771 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.01% |
3.3
|
Tsukamurella
|
RISB1531 |
Hoplothrips carpathicus
Order: Thysanoptera
|
This genus was identified as dominant in intensively feeding second-stage larvae and suggests a mechanism by which L2 larvae might process cellulose.
|
0.27% |
3.3
|
Gordonia
|
RISB1912 |
Hyles euphorbiae
Order: Lepidoptera
|
able to degrade alkaloids and/or latex
|
2.01% |
2.8
|
Pseudonocardia
|
RISB0947 |
Acromyrmex
Order: Hymenoptera
|
Pseudonocardia in the Acromyrmex leaf-cutter ants as a protective partner against the entomopathogenic fungus Metarhizium
|
0.28% |
2.7
|
Pseudonocardia
|
RISB1218 |
Mycocepurus smithii
Order: Hymenoptera
|
produce secondary metabolites with antibiotic activity that protects the fungus garden against pathogens
|
0.28% |
2.4
|
Bacteroides
|
RISB0256 |
Leptocybe invasa
Order: Hymenoptera
|
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
|
0.02% |
2.3
|
Bacteroides
|
RISB0090 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.02% |
2.1
|
Bacteroides
|
RISB1183 |
Oryzaephilus surinamensis
Order: Coleoptera
|
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
|
0.02% |
2.1
|
Arthrobacter
|
RISB1084 |
Hermetia illucens
Order: Diptera
|
Arthrobacter AK19 doubled the growth rate of larvae and increased the waste conversion by 25-30%
|
0.05% |
2.0
|
Mycobacterium
|
RISB1156 |
Nicrophorus concolor
Order: Coleoptera
|
produces Antimicrobial compounds
|
1.29% |
1.9
|
Vibrio
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.08% |
1.4
|
Paraclostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.01% |
1.1
|
Brevibacterium
|
RISB0464 |
Acrida cinerea
Order: Orthoptera
|
correlated with the hemicellulose digestibility
|
0.06% |
1.0
|
Nocardioides
|
RISB1914 |
Hyles euphorbiae
Order: Lepidoptera
|
able to degrade alkaloids and/or latex
|
0.23% |
1.0
|
Clavibacter
|
RISB0465 |
Trilophidia annulata
Order: Orthoptera
|
correlated with the hemicellulose digestibility
|
0.03% |
1.0
|
Brevibacterium
|
RISB2359 |
Bombyx mori
Order: Lepidoptera
|
producing lipase in a gut environment
|
0.06% |
0.8
|
Chryseobacterium
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.04% |
0.6
|
Priestia
|
RISB0839 |
Helicoverpa armigera
Order: Lepidoptera
|
producing amylase
|
0.02% |
0.4
|
Chryseobacterium
|
RISB1874 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.04% |
0.3
|
Leucobacter
|
RISB1876 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.01% |
0.3
|
Pectobacterium
|
RISB1772 |
Muscidae
Order: Diptera
|
None
|
0.28% |
0.3
|
Micromonospora
|
RISB2034 |
Harpalus sinicus
Order: Coleoptera
|
None
|
0.12% |
0.1
|
Neisseria
|
RISB0512 |
Plutella xylostella
Order: Lepidoptera
|
None
|
0.02% |
0.0
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.