SRR15166905 - Acheta domesticus
Basic Information
Run: SRR15166905
Assay Type: WGS
Bioproject: PRJNA742181
Biosample: SAMN20207116
Bytes: 368981641
Center Name: SWEDISH UNIVERSITY OF AGRICULTURAL SCIENCES
Sequencing Information
Instrument: Ion Torrent S5 XL
Library Layout: SINGLE
Library Selection: RANDOM PCR
Platform: ION_TORRENT
Quality Control Information
Filter Percentage: 0.0003
QC Average Length: 316
Retained Reads: -
Geographic Information
Country: Sweden
Continent: Europe
Location Name: Sweden
Latitude/Longitude: -
Sample Information
Host: Acheta domesticus
Isolation: -
Biosample Model: Metagenome or environmental
Collection Date: 2018-04-12
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
| Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
|---|---|---|---|---|---|
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
18.98% |
28.3
|
|
Wolbachia
Host Order Match
|
RISB0534 |
Velarifictorus micado
Order: Orthoptera
|
None
|
18.27% |
28.3
|
|
Escherichia coli
Species-level Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
18.98% |
26.7
|
|
Salmonella enterica
Species-level Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
21.52% |
26.5
|
|
Escherichia coli
Species-level Match
|
RISB2120 |
Galleria mellonella
Order: Lepidoptera
|
mediate trans-generational immune priming
|
18.98% |
24.8
|
|
Wolbachia
|
RISB0190 |
Encarsia formosa
Order: Hymenoptera
|
Wolbachia's parthenogenesis-induction feminization factor (piff) gene modulates sex determination in Encarsia formosa by regulating doublesex (dsx) expression. When Wolbachia is removed, female-specific dsx decreases while male-specific dsx increases, resulting in haploid male offspring
|
18.27% |
23.3
|
|
Wolbachia
|
RISB1584 |
Nasonia vitripennis
Order: Hymenoptera
|
there were few significant changes in immune or reproductive proteins between samples with and without Wolbachia infection. Differentially expressed proteins were involved in the binding process, catalytic activity, and the metabolic process
|
18.27% |
23.1
|
|
Klebsiella pneumoniae
Species-level Match
Host Order Match
|
RISB2052 |
Locusta migratoria
Order: Orthoptera
|
associated with cellulolytic enzymes
|
3.48% |
19.2
|
|
Pantoea agglomerans
Species-level Match
Host Order Match
|
RISB2579 |
Schistocerca gregaria
Order: Orthoptera
|
produces an antifungal and antibacterial molecule serving as antimicrobial defense against gut pathogens
|
0.31% |
17.4
|
|
Staphylococcus
|
RISB0945 |
Callosobruchus maculatus
Order: Coleoptera
|
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
|
9.16% |
14.2
|
|
Klebsiella pneumoniae
Species-level Match
|
RISB2185 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
3.48% |
13.5
|
|
Bacillus subtilis
Species-level Match
|
RISB0481 |
Bombyx mori
Order: Lepidoptera
|
B. subtilis can generate a variety of primary and secondary metabolites, such as B vitamins and antimicrobial compounds, to provide micronutrients and enhance the pathogen resistance of their insect host; The antimicrobial compounds secreted by B. subtilis were the primary driving force for the reconstruction of intestinal microbiota
|
3.17% |
13.2
|
|
Staphylococcus
|
RISB2497 |
Anticarsia gemmatalis
Order: Lepidoptera
|
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
|
9.16% |
13.1
|
|
Bacillus subtilis
Species-level Match
|
RISB2488 |
Anticarsia gemmatalis
Order: Lepidoptera
|
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
|
3.17% |
12.2
|
|
Bacillus subtilis
Species-level Match
|
RISB1205 |
Zeuzera pyrina
Order: Lepidoptera
|
process alkalophilic cellulase which hydrolyzed cellulose, avicel and carboxymethyl cellulose (CMC) and the final product of CMC hydrolysis was cellobiose using thin-layer chromatography analysis
|
3.17% |
12.1
|
|
Staphylococcus
|
RISB0427 |
Anopheles sinensis
Order: Diptera
|
be identified in each part of the hyperendemic area of this study has a potential role to interact with malaria parasites.
|
9.16% |
11.6
|
|
Pantoea agglomerans
Species-level Match
|
RISB2197 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.31% |
10.3
|
|
Streptomyces sp. NBC_01324
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
1.32% |
10.3
|
|
Streptomyces sp. NBC_01324
Species-level Match
|
RISB2334 |
Sirex noctilio
Order: Hymenoptera
|
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
|
1.32% |
10.0
|
|
Streptomyces sp. SJL17-4
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.80% |
9.8
|
|
Klebsiella pneumoniae
Species-level Match
|
RISB2459 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
3.48% |
9.5
|
|
Morganella morganii
Species-level Match
|
RISB0772 |
Delia antiqua
Order: Diptera
|
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.34% |
8.6
|
|
Morganella morganii
Species-level Match
|
RISB0008 |
Phormia regina
Order: Diptera
|
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
0.34% |
8.3
|
|
Morganella morganii
Species-level Match
|
RISB1867 |
Costelytra zealandica
Order: Coleoptera
|
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
|
0.34% |
8.2
|
|
Pantoea agglomerans
Species-level Match
|
RISB0379 |
Frankliniella occidentalis
Order: Thysanoptera
|
gut symbionts are required for their development
|
0.31% |
6.3
|
|
Lactococcus
|
RISB0131 |
Ceratitis capitata
Order: Diptera
|
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
|
1.12% |
6.1
|
|
Lactococcus
|
RISB2305 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
1.12% |
5.3
|
|
Lactococcus
|
RISB0967 |
Oulema melanopus
Order: Coleoptera
|
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
|
1.12% |
4.7
|
|
Xanthomonas
|
RISB0498 |
Xylocopa appendiculata
Order: Hymenoptera
|
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
|
0.59% |
4.4
|
|
Citrobacter
|
RISB1503 |
Bactrocera dorsalis
Order: Diptera
|
Pesticide-degrading bacteria were frequently detected from pesticide-resistant insects. Susceptible insects became resistant after inoculation of the pesticide-degrading symbiont
|
0.34% |
3.9
|
|
Citrobacter
|
RISB0192 |
Hermetia illucens
Order: Diptera
|
can directly promote the expression of two gene families related to intestinal protein metabolism: Hitryp serine protease trypsin family and Himtp metallopeptidase family
|
0.34% |
3.7
|
|
Bacteroides
|
RISB0256 |
Leptocybe invasa
Order: Hymenoptera
|
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
|
1.16% |
3.5
|
|
Bacteroides
|
RISB0090 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
1.16% |
3.3
|
|
Citrobacter
|
RISB0517 |
Leptinotarsa decemlineata
Order: Coleoptera
|
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
|
0.34% |
3.2
|
|
Bacteroides
|
RISB1183 |
Oryzaephilus surinamensis
Order: Coleoptera
|
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
|
1.16% |
3.2
|
|
Vibrio
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
1.33% |
2.7
|
|
Xanthomonas
|
RISB0217 |
Xylocopa appendiculata
Order: Hymenoptera
|
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
|
0.59% |
2.5
|
|
Nostoc
|
RISB0812 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-18 oxidation pathway
|
0.88% |
2.3
|
|
Halomonas
|
RISB1808 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.49% |
1.8
|
|
Halomonas
|
RISB1374 |
Bemisia tabaci
Order: Hemiptera
|
None
|
0.49% |
0.5
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.