SRR14744453 - Aphis craccivora
Basic Information
Run: SRR14744453
Assay Type: WGS
Bioproject: PRJNA735325
Biosample: SAMN19575724
Bytes: 2819297090
Center Name: UNIVERSITY OF AGRICULTURAL SCIENCES, BANGALORE
Sequencing Information
Instrument: Illumina NovaSeq 6000
Library Layout: PAIRED
Library Selection: RANDOM
Platform: ILLUMINA
Geographic Information
Country: India
Continent: Asia
Location Name: India: Udupi
Latitude/Longitude: 13.4433 N 74.7467 E
Sample Information
Host: Aphis craccivora
Isolation: -
Biosample Model: MIMS.me,MIGS/MIMS/MIMARKS.host-associated
Collection Date: 2020-03-06
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Buchnera aphidicola
Species-level Match
Host Order Match
Host Species Match
|
RISB0702 |
Aphis craccivora
Order: Hemiptera
|
obligatory nutritional symbiont
|
71.54% |
107.2
|
Buchnera aphidicola
Species-level Match
Host Order Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
71.54% |
91.5
|
Buchnera aphidicola
Species-level Match
Host Order Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
71.54% |
91.3
|
Rickettsia sp. MEAM1 (Bemisia tabaci)
Species-level Match
Host Order Match
Host Species Match
|
RISB0704 |
Aphis craccivora
Order: Hemiptera
|
facultative symbiont
|
0.44% |
35.8
|
Rickettsia sp. Oklahoma-10
Species-level Match
Host Order Match
Host Species Match
|
RISB0704 |
Aphis craccivora
Order: Hemiptera
|
facultative symbiont
|
0.01% |
35.4
|
Serratia symbiotica
Species-level Match
Host Order Match
|
RISB0576 |
Acyrthosiphon pisum
Order: Hemiptera
|
process of regression from winged to wingless morph was inhibited by Serratia symbiotica. The existence of the symbiont did not affect the body mass and fecundity of adult aphids, but it increased the body weight of nymphs and temporally increased the quantity of a primary symbiont, Buchnera aphidicola
|
0.12% |
20.1
|
Candidatus Walczuchella monophlebidarum
Species-level Match
Host Order Match
|
RISB2075 |
Llaveia axin axin
Order: Hemiptera
|
could be supplying most of these precursors for the amino acid biosynthesis as it has the potential to make ribulose-5P from ribose-1P and also PEP and pyruvate from glycolysis. It is also capable of producing homocysteine from homoserine for methionine biosynthesis,
|
0.03% |
20.0
|
Serratia marcescens
Species-level Match
Host Order Match
|
RISB0120 |
Nezara viridula
Order: Hemiptera
|
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies;transmitted bacteria impacted plant chemical defenses and were able to degrade toxic plant metabolites, aiding the shield bug in its nutrition
|
0.02% |
20.0
|
Candidatus Pantoea carbekii
Species-level Match
Host Order Match
|
RISB1046 |
Halyomorpha halys
Order: Hemiptera
|
provides its host with essential nutrients, vitamins, cofactors and protection of the most vulnerable stages of early development (1st nymphal stages). Pantoea carbekii is highly stress tolerant, especially once secreted to cover the eggs, by its unique biofilm-formation properties, securing host offspring survival
|
0.01% |
20.0
|
Arsenophonus sp. aPb
Species-level Match
Host Order Match
|
RISB1047 |
Aphis gossypii
Order: Hemiptera
|
secondary symbiont reduction led to reduction of the total life span and intrinsic rate of natural increase as well as appearance of the deformed dead offspring. H. defensa and Arsenophonus contributed to the fitness of A. gossypii by enhancing its performance, but not through parasitoid resistance.
|
0.01% |
20.0
|
Arsenophonus sp. aPb
Species-level Match
Host Order Match
|
RISB1300 |
Aphis gossypii
Order: Hemiptera
|
Arsenophonus sp. can have different effects on its hosts, including obligate mutualism in blood-sucking insects, improving the performance of whiteflies, or through facultative mutualism by protecting psyllids against parasitoid attacks.
|
0.01% |
19.8
|
Serratia marcescens
Species-level Match
Host Order Match
|
RISB0747 |
Rhodnius prolixus
Order: Hemiptera
|
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
|
0.02% |
19.7
|
Candidatus Nasuia deltocephalinicola
Species-level Match
Host Order Match
|
RISB2283 |
Nephotettix cincticeps
Order: Hemiptera
|
Oral administration of tetracycline to nymphal N. cincticeps resulted in retarded growth, high mortality rates, and failure in adult emergence, suggesting important biological roles of the symbionts for the host insect
|
0.00% |
19.4
|
Clostridium sp. DL-VIII
Species-level Match
Host Order Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.03% |
19.3
|
Clostridium sp. MB40-C1
Species-level Match
Host Order Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.02% |
19.2
|
Clostridium sp. 001
Species-level Match
Host Order Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.01% |
19.2
|
Candidatus Schneideria nysicola
Species-level Match
Host Order Match
|
RISB0872 |
Nysius sp.
Order: Hemiptera
|
synthesize four B vitamins(Pan, pantothenate;Fol, folate; Rib, riboflavin; Pyr, pyridoxine) and five Essential Amino Acids(Ile, isoleucine; Val, valine; Lys, lysine; Thr, threonine; Phe, phenylalanine)
|
0.00% |
19.0
|
Candidatus Carsonella ruddii
Species-level Match
Host Order Match
|
RISB0394 |
Cacopsylla pyricola
Order: Hemiptera
|
Carsonella produces most essential amino acids (EAAs) for C. pyricola, Psyllophila complements the genes missing in Carsonella for the tryptophan pathway and synthesizes some vitamins and carotenoids
|
0.02% |
19.0
|
Candidatus Portiera aleyrodidarum
Species-level Match
Host Order Match
|
RISB1193 |
Bemisia tabaci
Order: Hemiptera
|
synthesizing essential amino acid (e.g. tryptophan, leucine and L-Isoleucine), Bemisia tabaci provides vital nutritional support for growth, development and reproduction
|
0.01% |
18.4
|
Candidatus Gullanella endobia
Species-level Match
Host Order Match
|
RISB1885 |
Ferrisia virgata
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.01% |
18.4
|
Enterococcus sp. DIV0849a
Species-level Match
Host Order Match
|
RISB1490 |
Nezara viridula
Order: Hemiptera
|
help stinkbugs to feed on soybean developing seeds in spite of its chemical defenses by degrading isoflavonoids and deactivate soybean protease inhibitors
|
0.01% |
18.1
|
Arsenophonus sp. aPb
Species-level Match
Host Order Match
|
RISB1048 |
Aphis gossypii
Order: Hemiptera
|
symbiont reduction led to reduction of the total life span and intrinsic rate of natural increase as well as appearance of the deformed dead offspring
|
0.01% |
18.0
|
Spiroplasma ixodetis
Species-level Match
Host Order Match
|
RISB0842 |
Dactylopius coccus
Order: Hemiptera
|
use the T4SS to interact with the Dactylopius cells, which show a strong interaction and molecular signaling in the symbiosis
|
0.01% |
17.5
|
Candidatus Nasuia deltocephalinicola
Species-level Match
Host Order Match
|
RISB2282 |
Nephotettix cincticeps
Order: Hemiptera
|
With the antibiotic, nymphal growth was remarkably retarded, and a number of nymphs either died or failed to attain adulthood
|
0.00% |
17.5
|
Candidatus Nasuia deltocephalinicola
Species-level Match
Host Order Match
|
RISB0262 |
Maiestas dorsalis
Order: Hemiptera
|
are responsible for synthesizing two essential amino acids (histidine and methionine) and riboflavin (vitamin B2)
|
0.00% |
17.3
|
Candidatus Portiera aleyrodidarum
Species-level Match
Host Order Match
|
RISB2289 |
Bemisia tabaci
Order: Hemiptera
|
encoding the capability to synthetize, or participate in the synthesis of, several amino acids and carotenoids,
|
0.01% |
17.2
|
Candidatus Portiera aleyrodidarum
Species-level Match
Host Order Match
|
RISB1973 |
Bemisia tabaci
Order: Hemiptera
|
a primary symbiont, which compensates for the deficient nutritional composition of its food sources
|
0.01% |
17.0
|
Candidatus Ishikawella capsulata
Species-level Match
Host Order Match
|
RISB2368 |
Megacopta punctatissima
Order: Hemiptera
|
Microbe compensates for nutritional deficiency of host diet by supplying essential amino acids
|
0.00% |
16.9
|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB0700 |
Nilaparvata lugens
Order: Hemiptera
|
Pseudomonas sp. composition and abundance correlated with BPH survivability
|
0.17% |
16.7
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB0337 |
Riptortus pedestris
Order: Hemiptera
|
can be utilized as a novel probiotic which increase the survival rate of insects
|
0.06% |
16.7
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB0336 |
Riptortus pedestris
Order: Hemiptera
|
can be utilized as a novel probiotic which increase the survival rate of insects
|
0.04% |
16.6
|
Frischella perrara
Species-level Match
Host Order Match
|
RISB2028 |
Diceroprocta semicincta
Order: Hemiptera
|
causes the formation of a scab-like structure on the gut epithelium of its host
|
0.01% |
16.6
|
Pseudomonas sp. J380
Species-level Match
Host Order Match
|
RISB0700 |
Nilaparvata lugens
Order: Hemiptera
|
Pseudomonas sp. composition and abundance correlated with BPH survivability
|
0.01% |
16.5
|
Xenorhabdus bovienii
Species-level Match
Host Order Match
|
RISB2270 |
Acyrthosiphon pisum
Order: Hemiptera
|
have the gene PIN1 encoding the protease inhibitor protein against aphids
|
0.00% |
16.5
|
Candidatus Walczuchella monophlebidarum
Species-level Match
Host Order Match
|
RISB2074 |
Llaveia axin axin
Order: Hemiptera
|
may provide metabolic precursors to the flavobacterial endosymbiont
|
0.03% |
16.4
|
Candidatus Pantoea carbekii
Species-level Match
Host Order Match
|
RISB2115 |
Halyomorpha halys
Order: Hemiptera
|
the primary bacterial symbiont of H. halys
|
0.01% |
15.9
|
Candidatus Ishikawella capsulata
Species-level Match
Host Order Match
|
RISB2543 |
Megacopta punctatissima
Order: Hemiptera
|
Enhance pest status of the insect host
|
0.00% |
15.8
|
Salmonella enterica
Species-level Match
Host Order Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
0.61% |
15.6
|
Rickettsia bellii
Species-level Match
Host Order Match
|
RISB1897 |
Bemisia tabaci
Order: Hemiptera
|
None
|
0.36% |
15.4
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB0412 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
0.36% |
15.4
|
Candidatus Erwinia haradaeae
Species-level Match
Host Order Match
|
RISB1632 |
Lachninae
Order: Hemiptera
|
None
|
0.07% |
15.1
|
Candidatus Karelsulcia muelleri
Species-level Match
Host Order Match
|
RISB1591 |
Philaenus spumarius
Order: Hemiptera
|
None
|
0.06% |
15.1
|
Flavobacterium johnsoniae
Species-level Match
Host Order Match
|
RISB0659 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.04% |
15.0
|
Candidatus Carsonella ruddii
Species-level Match
Host Order Match
|
RISB0748 |
Diaphorina citri
Order: Hemiptera
|
None
|
0.02% |
15.0
|
Candidatus Annandia pinicola
Species-level Match
Host Order Match
|
RISB1661 |
Adelgidae
Order: Hemiptera
|
None
|
0.02% |
15.0
|
Staphylococcus xylosus
Species-level Match
Host Order Match
|
RISB0672 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.02% |
15.0
|
Pantoea agglomerans
Species-level Match
Host Order Match
|
RISB2357 |
Daktulosphaira vitifoliae
Order: Hemiptera
|
None
|
0.01% |
15.0
|
Cupriavidus pauculus
Species-level Match
Host Order Match
|
RISB0694 |
Alydus tomentosus
Order: Hemiptera
|
None
|
0.01% |
15.0
|
Sphingobacterium multivorum
Species-level Match
Host Order Match
|
RISB0671 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.01% |
15.0
|
Burkholderia
Host Order Match
|
RISB1327 |
Riptortus pedestris
Order: Hemiptera
|
fed with specific nutrients and also recycles host metabolic wastes in the insect gut, and in return, the bacterial symbiont provides the host with essential nutrients limited in the insect food, contributing to the rapid growth and enhanced reproduction of the bean bug host.
|
0.01% |
15.0
|
Candidatus Palibaumannia cicadellinicola
Species-level Match
Host Order Match
|
RISB1594 |
Graphocephala coccinea
Order: Hemiptera
|
None
|
0.00% |
15.0
|
Candidatus Steffania adelgidicola
Species-level Match
Host Order Match
|
RISB2278 |
Adelges nordmannianae/piceae
Order: Hemiptera
|
None
|
0.00% |
15.0
|
Candidatus Cardinium hertigii
Species-level Match
Host Order Match
|
RISB2548 |
Scaphoideus titanus
Order: Hemiptera
|
None
|
0.00% |
15.0
|
Burkholderia
Host Order Match
|
RISB0402 |
Riptortus pedestris
Order: Hemiptera
|
symbiont colonization induces the development of the midgut crypts via finely regulating the enterocyte cell cycles, enabling it to stably and abundantly colonize the generated spacious crypts of the bean bug host
|
0.01% |
14.3
|
Burkholderia
Host Order Match
|
RISB0221 |
Riptortus pedestris
Order: Hemiptera
|
symbiont modulates Kr-h1 expression to enhance ovarian development and egg production of R. pedestris by increasing the biosynthesis of the two reproduction-associated proteins, hexamerin-α and vitellogenin
|
0.01% |
14.1
|
Wolbachia
Host Order Match
|
RISB1444 |
Laodelphax striatellus
Order: Hemiptera
|
Wolbachia-infected host embryonic development genes revealed Ddx1 mRNAs, which is required for host viability and in the germ line, accumulated in the posterior region of 3-day-old embryos
|
0.26% |
14.0
|
Wolbachia
Host Order Match
|
RISB1539 |
Cimex lectularius
Order: Hemiptera
|
wCle provisions the bed bug with B vitamins.It is likely that because of wCle’s nutritional contribution to the bed bug, its titer increases in relation to bed bug growth and development.
|
0.26% |
14.0
|
Pectobacterium
Host Order Match
|
RISB1889 |
Pseudococcus longispinus
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.02% |
13.4
|
Wolbachia
Host Order Match
|
RISB0491 |
Cimex hemipterus
Order: Hemiptera
|
the disruption of the abundant Wolbachia could be related to the enhanced susceptibility towards the insecticides
|
0.26% |
12.5
|
Yersinia
Host Order Match
|
RISB0492 |
Cimex hemipterus
Order: Hemiptera
|
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
|
0.02% |
12.4
|
Liberibacter
Host Order Match
|
RISB2310 |
Bactericerca cockerelli
Order: Hemiptera
|
manipulate plant signaling and defensive responses, suppress accumulation of defense transcripts like JA and SA
|
0.01% |
12.3
|
Sphingomonas
Host Order Match
|
RISB0420 |
Aphis gossypii
Order: Hemiptera
|
Sphingomonas could mediate A. gossypii resistance to imidacloprid by hydroxylation and nitroreduction
|
0.01% |
12.0
|
Sphingomonas
Host Order Match
|
RISB1307 |
Aphis gossypii
Order: Hemiptera
|
have been previously described in associations with phloem-feeding insects, in low abundances
|
0.01% |
11.9
|
Liberibacter
Host Order Match
|
RISB2524 |
Bactericera cockerelli
Order: Hemiptera
|
Reduced expression of plant defensive gene in tomato probably for psyllid success
|
0.01% |
11.6
|
Pectobacterium
Host Order Match
|
RISB0798 |
Pseudoregma bambucicola
Order: Hemiptera
|
may help P. bambucicola feed on the stalks of bamboo
|
0.02% |
11.1
|
Liberibacter
Host Order Match
|
RISB2333 |
Cacopsylla pyri
Order: Hemiptera
|
behaves as an endophyte rather than a pathogen
|
0.01% |
10.9
|
Bacillus cereus
Species-level Match
|
RISB2161 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.43% |
10.4
|
Agrobacterium
Host Order Match
|
RISB0650 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.19% |
10.2
|
Bacillus thuringiensis
Species-level Match
|
RISB2177 |
Armadillidae
Order: Isopoda
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.18% |
10.2
|
Klebsiella pneumoniae
Species-level Match
|
RISB2185 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.15% |
10.2
|
Lactococcus lactis
Species-level Match
|
RISB0131 |
Ceratitis capitata
Order: Diptera
|
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
|
0.06% |
10.1
|
Helicobacter
Host Order Match
|
RISB0662 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.06% |
10.1
|
Bacillus subtilis
Species-level Match
|
RISB0481 |
Bombyx mori
Order: Lepidoptera
|
B. subtilis can generate a variety of primary and secondary metabolites, such as B vitamins and antimicrobial compounds, to provide micronutrients and enhance the pathogen resistance of their insect host; The antimicrobial compounds secreted by B. subtilis were the primary driving force for the reconstruction of intestinal microbiota
|
0.04% |
10.0
|
Paenibacillus polymyxa
Species-level Match
|
RISB2195 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.03% |
10.0
|
Candidatus Profftia
Host Order Match
|
RISB1664 |
Adelgidae
Order: Hemiptera
|
None
|
0.03% |
10.0
|
Aeromonas
Host Order Match
|
RISB2063 |
Sitobion miscanthi
Order: Hemiptera
|
None
|
0.03% |
10.0
|
Micromonospora
Host Order Match
|
RISB2033 |
Palomena viridissima
Order: Hemiptera
|
None
|
0.03% |
10.0
|
Candidatus Phytoplasma
Host Order Match
|
RISB1620 |
Cacopsylla pyricola
Order: Hemiptera
|
None
|
0.03% |
10.0
|
Francisella tularensis
Species-level Match
|
RISB1907 |
Bombyx mori
Order: Lepidoptera
|
After infection with F. tularensis, the induction of melanization and nodulation, which are immune responses to bacterial infection, were inhibited in silkworms. Pre-inoculation of silkworms with F. tularensis enhanced the expression of antimicrobial peptides and resistance to infection by pathogenic bacteria.
|
0.02% |
10.0
|
Metabacillus
Host Order Match
|
RISB0902 |
Myzus persicae
Order: Hemiptera
|
None
|
0.02% |
10.0
|
Enterococcus mundtii
Species-level Match
|
RISB1733 |
Spodoptera littoralis
Order: Lepidoptera
|
actively secretes a stable class IIa bacteriocin (mundticin KS) against invading bacteria, including the opportunistic pathogens E. faecalis and E. casseliflavus, but not against other gut residents, facilitating the normal development of host gut microbiota
|
0.01% |
10.0
|
Staphylococcus gallinarum
Species-level Match
|
RISB0945 |
Callosobruchus maculatus
Order: Coleoptera
|
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
|
0.01% |
10.0
|
Sphingomonas
Host Order Match
|
RISB0167 |
Pseudoregma bambucicola
Order: Hemiptera
|
None
|
0.01% |
10.0
|
Stenotrophomonas sp. 610A2
Species-level Match
|
RISB0325 |
Pharaxonotha floridana
Order: Coleoptera
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores
|
0.01% |
10.0
|
Gilliamella apicola
Species-level Match
|
RISB0102 |
Apis mellifera
Order: Hymenoptera
|
Gilliamella apicola carries the gene for the desaturase FADS2, which is able to metabolize polyunsaturated fatty acids from pollen and synthesize endocannabinoid, a lipogenic neuroactive substance, thereby modulating reward learning and memory in honeybees.
|
0.01% |
10.0
|
Listeria monocytogenes
Species-level Match
|
RISB2308 |
Drosophila melanogaster
Order: Diptera
|
L. monocytogenes infection disrupts host energy metabolism by depleting energy stores (triglycerides and glycogen) and reducing metabolic pathway activity (beta-oxidation and glycolysis). The infection affects antioxidant defense by reducing uric acid levels and alters amino acid metabolism. These metabolic changes are accompanied by melanization, potentially linked to decreased tyrosine levels.
|
0.01% |
10.0
|
Halomonas
Host Order Match
|
RISB1374 |
Bemisia tabaci
Order: Hemiptera
|
None
|
0.01% |
10.0
|
Paraburkholderia
Host Order Match
|
RISB0125 |
Physopelta gutta
Order: Hemiptera
|
None
|
0.01% |
10.0
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.17% |
10.0
|
Acinetobacter sp. ESL0695
Species-level Match
|
RISB0730 |
Curculio chinensis
Order: Coleoptera
|
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
|
0.01% |
9.7
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
0.36% |
9.7
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1122 |
Bombyx mori
Order: Lepidoptera
|
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
|
0.23% |
9.2
|
Streptomyces sp. WAC00303
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.21% |
9.2
|
Streptomyces sp. T12
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.13% |
9.1
|
Mammaliicoccus sciuri
Species-level Match
|
RISB0075 |
Bombyx mori
Order: Lepidoptera
|
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
|
0.04% |
9.0
|
Staphylococcus xylosus
Species-level Match
|
RISB2497 |
Anticarsia gemmatalis
Order: Lepidoptera
|
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
|
0.02% |
9.0
|
Streptomyces sp. Q6
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.01% |
9.0
|
Klebsiella michiganensis
Species-level Match
|
RISB1052 |
Bactrocera dorsalis
Order: Diptera
|
K. michiganensis BD177 has the strain-specific ability to provide three essential amino acids (phenylalanine, tryptophan and methionine) and two vitamins B (folate and riboflavin) to B. dorsalis
|
0.01% |
8.9
|
Acinetobacter pittii
Species-level Match
|
RISB1977 |
Blattella germanica
Order: Blattodea
|
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
|
0.03% |
8.9
|
Acinetobacter sp. ESL0695
Species-level Match
|
RISB1978 |
Blattella germanica
Order: Blattodea
|
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
|
0.01% |
8.8
|
Lactococcus lactis
Species-level Match
|
RISB0967 |
Oulema melanopus
Order: Coleoptera
|
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
|
0.06% |
8.6
|
Lactobacillus sp. CBA3605
Species-level Match
|
RISB0292 |
Lymantria dispar asiatica
Order: Lepidoptera
|
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
|
0.01% |
8.4
|
Sphingobacterium sp. UDSM-2020
Species-level Match
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.02% |
8.4
|
Sphingobacterium sp. ML3W
Species-level Match
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.01% |
8.4
|
Stenotrophomonas sp. 610A2
Species-level Match
|
RISB2228 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.01% |
8.4
|
Spiroplasma sp. SV19
Species-level Match
|
RISB1353 |
Cephus cinctus
Order: Hymenoptera
|
The bacterium also encoded biosynthetic pathways for essential vitamins B2, B3, and B9. We identified putative Spiroplasma virulence genes: cardiolipin and chitinase.
|
0.01% |
8.3
|
Blattabacterium cuenoti
Species-level Match
|
RISB0133 |
Panesthiinae
Order: Blattodea
|
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
|
0.39% |
8.3
|
Paenibacillus sp. FSL R7-0331
Species-level Match
|
RISB0774 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.03% |
8.3
|
Morganella morganii
Species-level Match
|
RISB0772 |
Delia antiqua
Order: Diptera
|
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.01% |
8.3
|
Wigglesworthia glossinidia
Species-level Match
|
RISB0369 |
Glossina morsitans
Order: Diptera
|
symbiont-derived factors, likely B vitamins, are critical for the proper function of both lipid biosynthesis and lipolysis to maintain tsetse fly fecundity
|
0.00% |
8.1
|
Escherichia coli
Species-level Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
0.36% |
8.1
|
Morganella morganii
Species-level Match
|
RISB0008 |
Phormia regina
Order: Diptera
|
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
0.01% |
8.0
|
Citrobacter freundii
Species-level Match
|
RISB0517 |
Leptinotarsa decemlineata
Order: Coleoptera
|
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
|
0.06% |
8.0
|
Spiroplasma poulsonii
Species-level Match
|
RISB1346 |
Drosophila melanogaster
Order: Diptera
|
S. poulsonii protects its host against parasitoid wasps and nematodes by the action of toxins from the family of Ribosome Inactivating Proteins
|
0.01% |
7.9
|
Morganella morganii
Species-level Match
|
RISB1867 |
Costelytra zealandica
Order: Coleoptera
|
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
|
0.01% |
7.9
|
Citrobacter freundii
Species-level Match
|
RISB0127 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
0.06% |
7.8
|
Klebsiella michiganensis
Species-level Match
|
RISB1131 |
Bactrocera dorsalis
Order: Diptera
|
promotes host resistance to low-temperature stress by stimulating its arginine and proline metabolism pathway in adult Bactrocera dorsalis
|
0.01% |
7.8
|
Citrobacter freundii
Species-level Match
|
RISB1221 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.06% |
7.8
|
Proteus vulgaris
Species-level Match
|
RISB0001 |
Leptinotarsa decemlineata
Order: Coleoptera
|
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
|
0.03% |
7.7
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1693 |
Plutella xylostella
Order: Lepidoptera
|
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
|
0.01% |
7.5
|
Psychrobacter sp. DAB_AL43B
Species-level Match
|
RISB1773 |
Calliphoridae
Order: Diptera
|
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
|
0.01% |
7.5
|
Proteus sp. ZN5
Species-level Match
|
RISB2315 |
Aedes aegypti
Order: Diptera
|
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
|
0.02% |
7.1
|
Wigglesworthia glossinidia
Species-level Match
|
RISB1786 |
Glossina morsitans
Order: Diptera
|
Synthesis of a large number of B vitamins, to supplement the host nutritional deficiencies of the diet
|
0.00% |
7.0
|
Snodgrassella alvi
Species-level Match
|
RISB1423 |
Bombus spp.
Order: Hymenoptera
|
The bumble bee microbiome slightly increases survivorship when the host is exposed to selenate
|
0.01% |
6.9
|
Paludibacter propionicigenes
Species-level Match
|
RISB2055 |
Odontotaenius disjunctus
Order: Coleoptera
|
microbial fixation of nitrogen that is important for this beetle to subsist on woody biomass
|
0.01% |
6.9
|
Blattabacterium sp. (Blattella germanica)
Species-level Match
|
RISB1534 |
Periplaneta fuliginosa
Order: Blattodea
|
involved in uric acid degradation, nitrogen assimilation and nutrient provisioning
|
0.01% |
6.7
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1692 |
Plutella xylostella
Order: Lepidoptera
|
participate in the synthesis of host lacking amino acids histidine and threonine
|
0.01% |
6.6
|
Paenibacillus sp. FSL R7-0331
Species-level Match
|
RISB0813 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-9 oxidation pathway
|
0.03% |
6.4
|
Wigglesworthia glossinidia
Species-level Match
|
RISB2577 |
Glossina brevipalpis
Order: Diptera
|
provide its tsetse host with metabolites such as vitamins
|
0.00% |
6.1
|
Candidatus Riesia pediculicola
Species-level Match
|
RISB2452 |
Pediculus humanus humanus
Order: Phthiraptera
|
supplement body lice nutritionally deficient blood diet
|
0.00% |
6.1
|
Blattabacterium cuenoti
Species-level Match
|
RISB0518 |
Cryptocercus punctulatus
Order: Blattodea
|
collaborative arginine biosynthesis
|
0.39% |
6.1
|
Proteus vulgaris
Species-level Match
|
RISB2460 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
0.03% |
6.0
|
Lactiplantibacillus plantarum
Species-level Match
|
RISB0674 |
Drosophila melanogaster
Order: Diptera
|
could effectively inhibit fungal spore germinations
|
0.01% |
6.0
|
Lysinibacillus fusiformis
Species-level Match
|
RISB1417 |
Psammotermes hypostoma
Order: Blattodea
|
isolates showed significant cellulolytic activity
|
0.03% |
6.0
|
Providencia rettgeri
Species-level Match
|
RISB1001 |
Anastrepha obliqua
Order: Diptera
|
improve the sexual competitiveness of males
|
0.04% |
5.9
|
Paludibacter propionicigenes
Species-level Match
|
RISB2056 |
Odontotaenius disjunctus
Order: Coleoptera
|
plays an important role in nitrogen fixation
|
0.01% |
5.9
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1691 |
Plutella xylostella
Order: Lepidoptera
|
activity of cellulose and hemicellulose
|
0.01% |
5.8
|
Candidatus Cardinium hertigii
Species-level Match
|
RISB2288 |
Encarsia pergandiella
Order: Hymenoptera
|
cause cytoplasmic incompatibility (CI)
|
0.00% |
5.8
|
Providencia sp. R33
Species-level Match
|
RISB1574 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
0.01% |
5.7
|
Providencia sp. R33
Species-level Match
|
RISB0984 |
Nasonia vitripennis
Order: Hymenoptera
|
may highly associated with diapause
|
0.01% |
5.7
|
Chryseobacterium sp. CY350
Species-level Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.02% |
5.6
|
Chryseobacterium sp. IHB B 17019
Species-level Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.01% |
5.6
|
Microbacterium sp. che218
Species-level Match
|
RISB2095 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.01% |
5.6
|
Bombilactobacillus bombi
Species-level Match
|
RISB0617 |
Spodoptera frugiperda
Order: Lepidoptera
|
degrade amygdalin
|
0.01% |
5.4
|
Lysinibacillus fusiformis
Species-level Match
|
RISB1066 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.03% |
5.3
|
Candidatus Megaera polyxenophila
Species-level Match
|
RISB0587 |
Multiple species
Order: None
|
None
|
0.05% |
5.1
|
Enterobacter hormaechei
Species-level Match
|
RISB1331 |
Zeugodacus cucurbitae
Order: Diptera
|
None
|
0.02% |
5.0
|
Zymomonas mobilis
Species-level Match
|
RISB1326 |
Vespa mandarinia
Order: Hymenoptera
|
None
|
0.02% |
5.0
|
Gilliamella apicola
Species-level Match
|
RISB1945 |
Apis cerana
Order: Hymenoptera
|
None
|
0.01% |
5.0
|
Snodgrassella alvi
Species-level Match
|
RISB1947 |
Apis cerana
Order: Hymenoptera
|
None
|
0.01% |
5.0
|
Lactiplantibacillus plantarum
Species-level Match
|
RISB0608 |
Drosophila melanogaster
Order: Diptera
|
None
|
0.01% |
5.0
|
Candidatus Legionella polyplacis
Species-level Match
|
RISB1687 |
Polyplax serrata
Order: Phthiraptera
|
None
|
0.01% |
5.0
|
Bifidobacterium
|
RISB0174 |
Apis mellifera
Order: Hymenoptera
|
Bifidobacterium provides complementary demethylation service to promote Gilliamella growth on methylated homogalacturonan, an enriched polysaccharide of pectin. In exchange, Gilliamella shares digestive products with Bifidobacterium, through which a positive interaction is established
|
0.01% |
5.0
|
Deinococcus
|
RISB1649 |
Camponotus japonicus
Order: Hymenoptera
|
Four new aminoglycolipids, deinococcucins A–D, were discovered from a Deinococcus sp. strain isolated from the gut of queen carpenter ants, Camponotus japonicus, showed functional ability of inducing the quinone reductase production in host cells
|
0.05% |
5.0
|
Treponema
|
RISB2377 |
termite
Order: Blattodea
|
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
|
0.03% |
4.9
|
Leadbettera
|
RISB2376 |
termite
Order: Blattodea
|
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
|
0.00% |
4.9
|
Apibacter
|
RISB0603 |
Apis cerana
Order: Hymenoptera
|
The acquisition of genes for the degradation of the toxic monosaccharides potentiates Apibacter with the ability to utilize the pollen hydrolysis products, at the same time enabling monosaccharide detoxification for the host
|
0.04% |
4.5
|
Weissella
|
RISB1982 |
Blattella germanica
Order: Blattodea
|
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
|
0.01% |
3.8
|
Photorhabdus
|
RISB2532 |
Manduca sexta
Order: Lepidoptera
|
produces a small-molecule antibiotic (E)-1,3-dihydroxy-2-(isopropyl)-5-(2-phenylethenyl)benzene (ST) that also acts as an inhibitor of phenoloxidase (PO) in the insect host Manduca sexta.
|
0.02% |
3.8
|
Bifidobacterium
|
RISB0616 |
Spodoptera frugiperda
Order: Lepidoptera
|
Strain wkB204 grew in the presence of amygdalin as the sole carbon source, suggesting that this strain degrades amygdalin and is not susceptible to the potential byproducts
|
0.01% |
3.5
|
Candidatus Blochmanniella
|
RISB2542 |
Camponotus
Order: Hymenoptera
|
Blochmannia provide essential amino acids to its host,Camponotus floridanus, and that it may also play a role in nitrogen recycling via its functional urease
|
0.06% |
3.2
|
Candidatus Blochmanniella
|
RISB1827 |
Camponotus floridanus
Order: Hymenoptera
|
a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission
|
0.06% |
3.1
|
Candidatus Blochmanniella
|
RISB2448 |
Camponotus floridanus
Order: Hymenoptera
|
nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling
|
0.06% |
2.8
|
Photorhabdus
|
RISB2573 |
Manduca sexta
Order: Lepidoptera
|
the bacteria are symbiotic with entomopathogenic nematodes but become pathogenic on release from the nematode into the insect blood system
|
0.02% |
2.8
|
Weissella
|
RISB0641 |
Formica
Order: Hymenoptera
|
exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew
|
0.01% |
2.8
|
Bartonella
|
RISB1673 |
Apis mellifera
Order: Hymenoptera
|
a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream
|
0.02% |
2.6
|
Shewanella
|
RISB1924 |
Anopheles gambiae
Order: Diptera
|
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
|
0.03% |
2.6
|
Bacteroides
|
RISB0256 |
Leptocybe invasa
Order: Hymenoptera
|
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
|
0.24% |
2.5
|
Nocardia
|
RISB0947 |
Acromyrmex
Order: Hymenoptera
|
Pseudonocardia in the Acromyrmex leaf-cutter ants as a protective partner against the entomopathogenic fungus Metarhizium
|
0.01% |
2.4
|
Bacteroides
|
RISB0090 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.24% |
2.4
|
Bacteroides
|
RISB1183 |
Oryzaephilus surinamensis
Order: Coleoptera
|
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
|
0.24% |
2.3
|
Streptococcus
|
RISB2625 |
Galleria mellonella
Order: Lepidoptera
|
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
|
0.22% |
2.2
|
Nocardia
|
RISB1218 |
Mycocepurus smithii
Order: Hymenoptera
|
produce secondary metabolites with antibiotic activity that protects the fungus garden against pathogens
|
0.01% |
2.1
|
Apilactobacillus
|
RISB0475 |
Apis mellifera
Order: Hymenoptera
|
A. kunkeei alleviated acetamiprid-induced symbiotic microbiota dysregulation and mortality in honeybees
|
0.01% |
2.1
|
Micrococcus
|
RISB2276 |
Ostrinia nubilalis
Order: Lepidoptera
|
extreme cellulolytic enzymes, at extreme (pH 12) conditions, exhibited cellulolytic properties
|
0.07% |
2.0
|
Streptococcus
|
RISB2624 |
Reticulitermes flavipes
Order: Blattodea
|
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
|
0.22% |
1.9
|
Corynebacterium
|
RISB0363 |
Pagiophloeus tsushimanus
Order: Coleoptera
|
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
|
0.01% |
1.8
|
Lachnospira
|
RISB2110 |
Blattella germanica
Order: Blattodea
|
Hydrolyze polysaccharide; assist digestion; synthesize acetate, propionate, and butyrate
|
0.00% |
1.8
|
Corynebacterium
|
RISB0531 |
Helicoverpa armigera
Order: Lepidoptera
|
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
|
0.01% |
1.7
|
Gluconobacter
|
RISB0016 |
Aedes aegypti
Order: Diptera
|
Gluconobacter might increase the susceptibility of Ae. aegypti to CHIKV infection.
|
0.01% |
1.7
|
Vibrio
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.30% |
1.6
|
Agrobacterium
|
RISB0710 |
Fragariocoptes setiger
Order: Trombidiformes
|
it appears to form a biologically important association with the mite
|
0.19% |
1.6
|
Nostoc
|
RISB0812 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-18 oxidation pathway
|
0.12% |
1.5
|
Leuconostoc
|
RISB0812 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-18 oxidation pathway
|
0.01% |
1.4
|
Streptococcus
|
RISB2604 |
Homona magnanima
Order: Lepidoptera
|
influence the growth of Bacillus thuringiensis in the larvae
|
0.22% |
1.4
|
Halomonas
|
RISB1808 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.01% |
1.3
|
Candidatus Mesenet
|
RISB1785 |
Brontispa longissima
Order: Coleoptera
|
induced complete Cytoplasmic incompatibility (CI) (100% mortality)
|
0.00% |
1.3
|
Variovorax
|
RISB2153 |
Osmia bicornis
Order: Hymenoptera
|
may be essential to support Osmia larvae in their nutrient uptake
|
0.01% |
1.3
|
Dysgonomonas
|
RISB1235 |
Hermetia illucens
Order: Diptera
|
provides the tools for degrading of a broad range of substrates
|
0.01% |
1.3
|
Photorhabdus
|
RISB0532 |
Drosophila melanogaster
Order: Diptera
|
produces toxin complex (Tc) toxins as major virulence factors
|
0.02% |
1.2
|
Gluconobacter
|
RISB1882 |
Drosophila suzukii
Order: Diptera
|
produce volatile substances that attract female D. suzukii
|
0.01% |
1.2
|
Paraclostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.10% |
1.2
|
Aeromonas
|
RISB2456 |
Bombyx mori
Order: Lepidoptera
|
able to utilize the CMcellulose and xylan
|
0.03% |
0.9
|
Corynebacterium
|
RISB2360 |
Bombyx mori
Order: Lepidoptera
|
producing lipase in a gut environment
|
0.01% |
0.8
|
Chroococcidiopsis
|
RISB0487 |
Ceratitis capitata
Order: Diptera
|
None
|
0.77% |
0.8
|
Gordonia
|
RISB1912 |
Hyles euphorbiae
Order: Lepidoptera
|
able to degrade alkaloids and/or latex
|
0.01% |
0.8
|
Mycobacterium
|
RISB1156 |
Nicrophorus concolor
Order: Coleoptera
|
produces Antimicrobial compounds
|
0.02% |
0.7
|
Turicibacter
|
RISB0451 |
Odontotaenius disjunctus
Order: Coleoptera
|
degrading ellulose and xylan
|
0.02% |
0.6
|
Aeromonas
|
RISB2086 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.03% |
0.6
|
Priestia
|
RISB0839 |
Helicoverpa armigera
Order: Lepidoptera
|
producing amylase
|
0.11% |
0.5
|
Peribacillus
|
RISB1877 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.15% |
0.4
|
Myroides
|
RISB0626 |
Musca altica
Order: Diptera
|
None
|
0.07% |
0.1
|
Vagococcus
|
RISB0042 |
Aldrichina grahami
Order: Diptera
|
None
|
0.05% |
0.1
|
Apibacter
|
RISB0604 |
Apis cerana
Order: Hymenoptera
|
None
|
0.04% |
0.0
|
Candidatus Arthromitus
|
RISB2613 |
Multiple species
Order: None
|
None
|
0.04% |
0.0
|
Micromonospora
|
RISB2034 |
Harpalus sinicus
Order: Coleoptera
|
None
|
0.03% |
0.0
|
Treponema
|
RISB0169 |
Reticulitermes flaviceps
Order: Blattodea
|
None
|
0.03% |
0.0
|
Pectobacterium
|
RISB1772 |
Muscidae
Order: Diptera
|
None
|
0.02% |
0.0
|
Yersinia
|
RISB0407 |
Anaphes nitens
Order: Hymenoptera
|
None
|
0.02% |
0.0
|
Bifidobacterium
|
RISB1944 |
Apis cerana
Order: Hymenoptera
|
None
|
0.01% |
0.0
|
Weissella
|
RISB1566 |
Liometopum apiculatum
Order: Hymenoptera
|
None
|
0.01% |
0.0
|
Gluconobacter
|
RISB0876 |
Drosophila suzukii
Order: Diptera
|
None
|
0.01% |
0.0
|
Variovorax
|
RISB1712 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.01% |
0.0
|
Dysgonomonas
|
RISB1481 |
Brachinus elongatulus
Order: Coleoptera
|
None
|
0.01% |
0.0
|
Neisseria
|
RISB0512 |
Plutella xylostella
Order: Lepidoptera
|
None
|
0.01% |
0.0
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.