SRR12668519 - Tribolium castaneum
Basic Information
Run: SRR12668519
Assay Type: WGS
Bioproject: PRJNA663749
Biosample: SAMN16178311
Bytes: 40944282
Center Name: NATIONAL CENTER FOR BIOLOGICAL SCIENCES
Sequencing Information
Instrument: Illumina MiSeq
Library Layout: PAIRED
Library Selection: PCR
Platform: ILLUMINA
Geographic Information
Country: India
Continent: Asia
Location Name: India:Bangalore
Latitude/Longitude: 12.9716 N 77.5946 E
Sample Information
Host: Tribolium castaneum
Isolation: -
Biosample Model: Metagenome or environmental
Collection Date: 2017-08-12
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Xanthomonas
|
RISB0498 |
Xylocopa appendiculata
Order: Hymenoptera
|
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
|
41.65% |
45.4
|
Xanthomonas
|
RISB0217 |
Xylocopa appendiculata
Order: Hymenoptera
|
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
|
41.65% |
43.6
|
Escherichia coli
Species-level Match
Host Order Match
Host Species Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
2.35% |
40.1
|
Enterococcus faecalis
Species-level Match
Host Order Match
Host Species Match
|
RISB0374 |
Tribolium castaneum
Order: Coleoptera
|
modulates host phosphine resistance by interfering with the redox system
|
1.09% |
37.5
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB0497 |
Cryptolestes ferrugineus
Order: Coleoptera
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
|
1.09% |
18.7
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB2042 |
Harpalus pensylvanicus
Order: Coleoptera
|
E. faecalis facilitate seed consumption by H. pensylvanicus, possibly by contributing digestive enzymes to their host
|
1.09% |
18.4
|
Staphylococcus
Host Order Match
|
RISB0945 |
Callosobruchus maculatus
Order: Coleoptera
|
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
|
1.36% |
16.4
|
Klebsiella pneumoniae
Species-level Match
Host Order Match
|
RISB1153 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.72% |
16.1
|
Staphylococcus
Host Order Match
|
RISB0946 |
Callosobruchus maculatus
Order: Coleoptera
|
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine
|
1.36% |
13.7
|
Bacteroides
Host Order Match
|
RISB1183 |
Oryzaephilus surinamensis
Order: Coleoptera
|
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
|
0.46% |
12.5
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
2.35% |
11.7
|
Staphylococcus
Host Order Match
|
RISB1070 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
1.36% |
11.6
|
Bacillus thuringiensis
Species-level Match
|
RISB2177 |
Armadillidae
Order: Isopoda
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
1.22% |
11.2
|
Bacillus thuringiensis
Species-level Match
|
RISB0109 |
Tuta absoluta
Order: Lepidoptera
|
Individual exposure of B. thuringiensis isolates to P. absoluta revealed high susceptibility of the pest and could potentially be used to develop effective, safe and affordable microbial pesticides for the management of P. absoluta.
|
1.22% |
10.9
|
Klebsiella pneumoniae
Species-level Match
|
RISB2185 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.72% |
10.7
|
Enterobacter ludwigii
Species-level Match
|
RISB1543 |
Helicoverpa zea
Order: Lepidoptera
|
two immunity-related genes glucose oxidase (GOX) and lysozyme (LYZ) were more highly expressed in both salivary glands and midguts compared with MgCl2 solution-treated caterpillars
|
0.33% |
8.9
|
Bacillus thuringiensis
Species-level Match
|
RISB1863 |
Spodoptera littoralis
Order: Lepidoptera
|
a widely used bacterial entomopathogen producing insecticidal toxins, some of which are expressed in insect-resistant transgenic crops
|
1.22% |
8.9
|
Escherichia coli
Species-level Match
|
RISB2120 |
Galleria mellonella
Order: Lepidoptera
|
mediate trans-generational immune priming
|
2.35% |
8.2
|
Enterobacter ludwigii
Species-level Match
|
RISB1223 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.33% |
8.0
|
Salmonella enterica
Species-level Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
2.73% |
7.7
|
Methylobacterium
|
RISB1440 |
Lutzomyia evansi
Order: Diptera
|
Methylobacterium can be important in several physiological and metabolic processes in Lu. evansi, which suggests that interactions could occur with Leishmania parasite
|
3.62% |
7.0
|
Klebsiella pneumoniae
Species-level Match
|
RISB2459 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
0.72% |
6.7
|
Enterobacter ludwigii
Species-level Match
|
RISB1397 |
Delia antiqua
Order: Diptera
|
suppressed Beauveria bassiana conidia germination and hyphal growth
|
0.33% |
6.7
|
Bifidobacterium
|
RISB0174 |
Apis mellifera
Order: Hymenoptera
|
Bifidobacterium provides complementary demethylation service to promote Gilliamella growth on methylated homogalacturonan, an enriched polysaccharide of pectin. In exchange, Gilliamella shares digestive products with Bifidobacterium, through which a positive interaction is established
|
0.56% |
5.6
|
Brevundimonas sp. Bb-A
Species-level Match
|
RISB1703 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.30% |
5.3
|
Streptococcus
|
RISB2625 |
Galleria mellonella
Order: Lepidoptera
|
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
|
2.45% |
4.5
|
Methylobacterium
|
RISB2053 |
Atractomorpha sinensis
Order: Orthoptera
|
associated with cellulolytic enzymes
|
3.62% |
4.3
|
Streptococcus
|
RISB2624 |
Reticulitermes flavipes
Order: Blattodea
|
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
|
2.45% |
4.1
|
Bifidobacterium
|
RISB0616 |
Spodoptera frugiperda
Order: Lepidoptera
|
Strain wkB204 grew in the presence of amygdalin as the sole carbon source, suggesting that this strain degrades amygdalin and is not susceptible to the potential byproducts
|
0.56% |
4.0
|
Methylobacterium
|
RISB2340 |
Saturniidae
Order: Lepidoptera
|
Nitrogen fixation
|
3.62% |
4.0
|
Streptococcus
|
RISB2604 |
Homona magnanima
Order: Lepidoptera
|
influence the growth of Bacillus thuringiensis in the larvae
|
2.45% |
3.7
|
Bacteroides
|
RISB0256 |
Leptocybe invasa
Order: Hymenoptera
|
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
|
0.46% |
2.8
|
Bacteroides
|
RISB0090 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.46% |
2.6
|
Bifidobacterium
|
RISB1944 |
Apis cerana
Order: Hymenoptera
|
None
|
0.56% |
0.6
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.