SRR12668491 - Tribolium castaneum
Basic Information
Run: SRR12668491
Assay Type: WGS
Bioproject: PRJNA663749
Biosample: SAMN16178359
Bytes: 29945191
Center Name: NATIONAL CENTER FOR BIOLOGICAL SCIENCES
Sequencing Information
Instrument: Illumina MiSeq
Library Layout: PAIRED
Library Selection: PCR
Platform: ILLUMINA
Geographic Information
Country: India
Continent: Asia
Location Name: India:Bangalore
Latitude/Longitude: 12.9716 N 77.5946 E
Sample Information
Host: Tribolium castaneum
Isolation: -
Biosample Model: Metagenome or environmental
Collection Date: 2018-07-24
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Escherichia coli
Species-level Match
Host Order Match
Host Species Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
22.11% |
59.8
|
Enterococcus faecalis
Species-level Match
Host Order Match
Host Species Match
|
RISB0374 |
Tribolium castaneum
Order: Coleoptera
|
modulates host phosphine resistance by interfering with the redox system
|
8.81% |
45.3
|
Citrobacter
Host Order Match
Host Species Match
|
RISB0127 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
0.27% |
33.0
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
22.11% |
31.4
|
Escherichia coli
Species-level Match
|
RISB2120 |
Galleria mellonella
Order: Lepidoptera
|
mediate trans-generational immune priming
|
22.11% |
27.9
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB0497 |
Cryptolestes ferrugineus
Order: Coleoptera
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
|
8.81% |
26.4
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB2042 |
Harpalus pensylvanicus
Order: Coleoptera
|
E. faecalis facilitate seed consumption by H. pensylvanicus, possibly by contributing digestive enzymes to their host
|
8.81% |
26.2
|
Salmonella enterica
Species-level Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
19.09% |
24.1
|
Candidatus Sodalis pierantonius
Species-level Match
Host Order Match
|
RISB2035 |
Sitophilus oryzae
Order: Coleoptera
|
endosymbiont dynamics parallels numerous transcriptional changes in weevil developing adults and affects several biological processes, including metabolism and development
|
0.28% |
18.7
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB1867 |
Costelytra zealandica
Order: Coleoptera
|
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
|
0.18% |
18.0
|
Klebsiella pneumoniae
Species-level Match
Host Order Match
|
RISB1153 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
2.62% |
18.0
|
Pseudomonas aeruginosa
Species-level Match
Host Order Match
|
RISB0364 |
Pagiophloeus tsushimanus
Order: Coleoptera
|
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
|
0.89% |
17.7
|
Candidatus Sodalis pierantonius
Species-level Match
Host Order Match
|
RISB0972 |
Sitophilus oryzae
Order: Coleoptera
|
produce vitamins and essential amino acids required for insect development and cuticle biosynthesis
|
0.28% |
17.3
|
Candidatus Sodalis pierantonius
Species-level Match
Host Order Match
|
RISB0251 |
Sitophilus oryzae
Order: Coleoptera
|
may infulence immunity, metabolism, metal control, apoptosis, and bacterial stress response
|
0.28% |
17.1
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB1548 |
Costelytra zealandica
Order: Coleoptera
|
symbionts residing in the colleterial glands produce phenol 1 as the female sex pheromone
|
0.18% |
17.0
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB1868 |
Costelytra zealandica
Order: Coleoptera
|
produces phenol as the sex pheromone of the host from tyrosine in the colleterial gland
|
0.18% |
16.9
|
Novosphingobium
Host Order Match
|
RISB1837 |
Dendroctonus valens
Order: Coleoptera
|
It can trongly degrade naringenin, and pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and facilitate naringenin biodegradation by the microbiotas.
|
2.41% |
16.4
|
Staphylococcus
Host Order Match
|
RISB0945 |
Callosobruchus maculatus
Order: Coleoptera
|
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
|
1.42% |
16.4
|
Staphylococcus
Host Order Match
|
RISB0946 |
Callosobruchus maculatus
Order: Coleoptera
|
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine
|
1.42% |
13.8
|
Citrobacter
Host Order Match
|
RISB1357 |
Callosobruchus maculatus
Order: Coleoptera
|
These bacterial phyla may allow the adults C. maculatus to survive on DDVP treated grains, thereby making it inappropriate to control the beetle populations in the field.
|
0.27% |
13.7
|
Citrobacter
Host Order Match
|
RISB0517 |
Leptinotarsa decemlineata
Order: Coleoptera
|
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
|
0.27% |
13.2
|
Bacillus
Host Order Match
|
RISB1645 |
Osphranteria coerulescens
Order: Coleoptera
|
The isolate has cellulolytic activity and can hydrolyze CMC, avicel, cellulose and sawdust with broad temperature and pH stability
|
0.50% |
13.1
|
Bacillus
Host Order Match
|
RISB0493 |
Sitophilus oryzae
Order: Coleoptera
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
|
0.50% |
13.1
|
Vibrio
Host Order Match
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
1.35% |
12.7
|
Klebsiella pneumoniae
Species-level Match
|
RISB2185 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
2.62% |
12.6
|
Bacillus
Host Order Match
|
RISB0805 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-8 oxidation pathway
|
0.50% |
11.9
|
Staphylococcus
Host Order Match
|
RISB1070 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
1.42% |
11.6
|
Kosakonia
Host Order Match
|
RISB0810 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-16 oxidation pathway
|
0.22% |
11.6
|
Enterobacter ludwigii
Species-level Match
|
RISB1543 |
Helicoverpa zea
Order: Lepidoptera
|
two immunity-related genes glucose oxidase (GOX) and lysozyme (LYZ) were more highly expressed in both salivary glands and midguts compared with MgCl2 solution-treated caterpillars
|
2.30% |
10.9
|
Aeromonas
Host Order Match
|
RISB1145 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.52% |
10.9
|
Kosakonia
Host Order Match
|
RISB1155 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.22% |
10.6
|
Serratia symbiotica
Species-level Match
|
RISB0576 |
Acyrthosiphon pisum
Order: Hemiptera
|
process of regression from winged to wingless morph was inhibited by Serratia symbiotica. The existence of the symbiont did not affect the body mass and fecundity of adult aphids, but it increased the body weight of nymphs and temporally increased the quantity of a primary symbiont, Buchnera aphidicola
|
0.28% |
10.3
|
Candidatus Hamiltonella defensa
Species-level Match
|
RISB1049 |
Aphis gossypii
Order: Hemiptera
|
secondary symbiont reduction led to reduction of the total life span and intrinsic rate of natural increase as well as appearance of the deformed dead offspring. H. defensa and Arsenophonus contributed to the fitness of A. gossypii by enhancing its performance, but not through parasitoid resistance.
|
0.10% |
10.1
|
Enterobacter ludwigii
Species-level Match
|
RISB1223 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
2.30% |
10.0
|
Serratia symbiotica
Species-level Match
|
RISB0179 |
Acyrthosiphon pisum
Order: Hemiptera
|
harboring Serratia improved host aphid growth and fecundity but reduced longevity. Serratia defends aphids against P. japonica by impeding the predator's development and predation capacity, and modulating its foraging behavior
|
0.28% |
9.8
|
Candidatus Hamiltonella defensa
Species-level Match
|
RISB1296 |
Sitobion miscanthi
Order: Hemiptera
|
Increase the reproductive capacity of wheat aphids, increase the number of offspring and reduce the age of first breeding, suppressed the salicylic acid (SA)- and jasmonic acid (JA)-related defense pathways and SA/JA accumulation
|
0.10% |
9.7
|
Candidatus Erwinia haradaeae
Species-level Match
|
RISB1632 |
Lachninae
Order: Hemiptera
|
None
|
4.37% |
9.4
|
Candidatus Hamiltonella defensa
Species-level Match
|
RISB0630 |
Acyrthosiphon pisum
Order: Hemiptera
|
In response to ladybirds, symbiont-infected pea aphids exhibited proportionately fewer evasive defences (dropping and walking away) than non-infected (cured) pea aphids, but more frequent aggressive kicking
|
0.10% |
9.2
|
Acinetobacter pittii
Species-level Match
|
RISB1977 |
Blattella germanica
Order: Blattodea
|
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
|
0.19% |
9.0
|
Serratia symbiotica
Species-level Match
|
RISB1333 |
Adelges tsugae
Order: Hemiptera
|
help to maintain aphid fitness during heat stress to varying degrees; the presence of facultative symbionts like S. symbiotica may protect the obligate symbiont Buchnera
|
0.28% |
8.7
|
Enterobacter ludwigii
Species-level Match
|
RISB1397 |
Delia antiqua
Order: Diptera
|
suppressed Beauveria bassiana conidia germination and hyphal growth
|
2.30% |
8.6
|
Klebsiella pneumoniae
Species-level Match
|
RISB2459 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
2.62% |
8.6
|
Candidatus Westeberhardia cardiocondylae
Species-level Match
|
RISB1794 |
Cardiocondyla obscurior
Order: Hymenoptera
|
Contributes to cuticle formation and is responsible for host invasive success
|
0.14% |
6.7
|
Xanthomonas
|
RISB0498 |
Xylocopa appendiculata
Order: Hymenoptera
|
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
|
2.76% |
6.5
|
Candidatus Westeberhardia cardiocondylae
Species-level Match
|
RISB1795 |
Cardiocondyla obscurior
Order: Hymenoptera
|
a contribution of Westeberhardia to cuticle formation
|
0.14% |
6.2
|
Candidatus Steffania adelgidicola
Species-level Match
|
RISB2278 |
Adelges nordmannianae/piceae
Order: Hemiptera
|
None
|
0.38% |
5.4
|
Listeria
|
RISB2308 |
Drosophila melanogaster
Order: Diptera
|
L. monocytogenes infection disrupts host energy metabolism by depleting energy stores (triglycerides and glycogen) and reducing metabolic pathway activity (beta-oxidation and glycolysis). The infection affects antioxidant defense by reducing uric acid levels and alters amino acid metabolism. These metabolic changes are accompanied by melanization, potentially linked to decreased tyrosine levels.
|
0.26% |
5.3
|
Brevundimonas sp. M20
Species-level Match
|
RISB1703 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.25% |
5.3
|
Candidatus Cardinium
|
RISB0223 |
Bemisia tabaci
Order: Hemiptera
|
Cardinium could inhibit the defense response of the host plant and decrease the detoxification metabolism ability of the host whitefly, decrease the expression of detoxification metabolism genes, especially the uridine 5'-diphospho-glucuronyltransferase and P450 genes,
|
0.11% |
5.1
|
Candidatus Cardinium
|
RISB1439 |
Lutzomyia evansi
Order: Diptera
|
‘Candidatus Cardinium’ is a recently described bacterium from the Bacteroidetes group involved in diverse reproduction alterations of its arthropod hosts (including cytoplasmic incompatibility, parthenogenesis, and feminization) similar to Wolbachia
|
0.11% |
5.1
|
Xanthomonas
|
RISB0217 |
Xylocopa appendiculata
Order: Hymenoptera
|
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
|
2.76% |
4.7
|
Yersinia
|
RISB0492 |
Cimex hemipterus
Order: Hemiptera
|
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
|
0.96% |
3.4
|
Candidatus Cardinium
|
RISB2290 |
Sogatella furcifera
Order: Hemiptera
|
dual infection with Cardinium and Wolbachia induced strong cytoplasmic incompatibility (CI) in a single host
|
0.11% |
2.3
|
Aeromonas
|
RISB2456 |
Bombyx mori
Order: Lepidoptera
|
able to utilize the CMcellulose and xylan
|
0.52% |
1.3
|
Aeromonas
|
RISB2086 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.52% |
1.1
|
Yersinia
|
RISB0407 |
Anaphes nitens
Order: Hymenoptera
|
None
|
0.96% |
1.0
|
Ralstonia
|
RISB0243 |
Spodoptera frugiperda
Order: Lepidoptera
|
None
|
0.39% |
0.4
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.