SRR12668466 - Tribolium castaneum
Basic Information
Run: SRR12668466
Assay Type: WGS
Bioproject: PRJNA663749
Biosample: SAMN16178215
Bytes: 1273419938
Center Name: NATIONAL CENTER FOR BIOLOGICAL SCIENCES
Sequencing Information
Instrument: Illumina MiSeq
Library Layout: PAIRED
Library Selection: PCR
Platform: ILLUMINA
Geographic Information
Country: India
Continent: Asia
Location Name: India:Bangalore
Latitude/Longitude: 12.9716 N 77.5946 E
Sample Information
Host: Tribolium castaneum
Isolation: -
Biosample Model: Metagenome or environmental
Collection Date: 2018-07-24
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Escherichia coli
Species-level Match
Host Order Match
Host Species Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
12.70% |
50.4
|
Enterococcus faecalis
Species-level Match
Host Order Match
Host Species Match
|
RISB0374 |
Tribolium castaneum
Order: Coleoptera
|
modulates host phosphine resistance by interfering with the redox system
|
9.74% |
46.2
|
Citrobacter freundii
Species-level Match
Host Order Match
Host Species Match
|
RISB0127 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
0.02% |
37.7
|
Acinetobacter sp. NCu2D-2
Species-level Match
Host Order Match
Host Species Match
|
RISB0993 |
Tribolium castaneum
Order: Coleoptera
|
may play a role in the larval gut for biodegradation of Polystyrene PS
|
0.03% |
36.4
|
Streptococcus
|
RISB2625 |
Galleria mellonella
Order: Lepidoptera
|
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
|
26.07% |
28.1
|
Streptococcus
|
RISB2624 |
Reticulitermes flavipes
Order: Blattodea
|
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
|
26.07% |
27.7
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB0497 |
Cryptolestes ferrugineus
Order: Coleoptera
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
|
9.74% |
27.3
|
Streptococcus
|
RISB2604 |
Homona magnanima
Order: Lepidoptera
|
influence the growth of Bacillus thuringiensis in the larvae
|
26.07% |
27.3
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB2042 |
Harpalus pensylvanicus
Order: Coleoptera
|
E. faecalis facilitate seed consumption by H. pensylvanicus, possibly by contributing digestive enzymes to their host
|
9.74% |
27.1
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
12.70% |
22.0
|
Serratia sp. CMO1
Species-level Match
Host Order Match
|
RISB0308 |
Rhopalotria slossonae
Order: Coleoptera
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores
|
0.01% |
20.0
|
Serratia liquefaciens
Species-level Match
Host Order Match
|
RISB1624 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.04% |
19.9
|
Pseudomonas sp. NS1(2017)
Species-level Match
Host Order Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.04% |
19.9
|
Acinetobacter sp. NCu2D-2
Species-level Match
Host Order Match
|
RISB0730 |
Curculio chinensis
Order: Coleoptera
|
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
|
0.03% |
19.7
|
Candidatus Sodalis pierantonius
Species-level Match
Host Order Match
|
RISB2035 |
Sitophilus oryzae
Order: Coleoptera
|
endosymbiont dynamics parallels numerous transcriptional changes in weevil developing adults and affects several biological processes, including metabolism and development
|
0.14% |
18.6
|
Escherichia coli
Species-level Match
|
RISB2120 |
Galleria mellonella
Order: Lepidoptera
|
mediate trans-generational immune priming
|
12.70% |
18.5
|
Pseudomonas sp. NS1(2017)
Species-level Match
Host Order Match
|
RISB2224 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.04% |
18.4
|
Sodalis praecaptivus
Species-level Match
Host Order Match
|
RISB1718 |
Sitophilus zeamais
Order: Coleoptera
|
we investigated the role of a quorum sensing(QS ) system in S. praecaptivus and found that it negatively regulates a potent insect-killing phenotype
|
0.00% |
18.0
|
Citrobacter freundii
Species-level Match
Host Order Match
|
RISB0517 |
Leptinotarsa decemlineata
Order: Coleoptera
|
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
|
0.02% |
17.9
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB1867 |
Costelytra zealandica
Order: Coleoptera
|
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
|
0.08% |
17.9
|
Bacillus sp. ZHX3
Species-level Match
Host Order Match
|
RISB1645 |
Osphranteria coerulescens
Order: Coleoptera
|
The isolate has cellulolytic activity and can hydrolyze CMC, avicel, cellulose and sawdust with broad temperature and pH stability
|
0.18% |
17.8
|
Bacillus subtilis
Species-level Match
Host Order Match
|
RISB0494 |
Sitophilus oryzae
Order: Coleoptera
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
|
0.09% |
17.7
|
Bacillus sp. ABP14
Species-level Match
Host Order Match
|
RISB1645 |
Osphranteria coerulescens
Order: Coleoptera
|
The isolate has cellulolytic activity and can hydrolyze CMC, avicel, cellulose and sawdust with broad temperature and pH stability
|
0.01% |
17.6
|
Serratia liquefaciens
Species-level Match
Host Order Match
|
RISB1801 |
Dendroctonus valens
Order: Coleoptera
|
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth
|
0.04% |
17.2
|
Acinetobacter sp. NCu2D-2
Species-level Match
Host Order Match
|
RISB0706 |
Curculio chinensis
Order: Coleoptera
|
facilitate the degradation of tea saponin; genome contains 47 genes relating to triterpenoids degradation
|
0.03% |
17.1
|
Candidatus Sodalis pierantonius
Species-level Match
Host Order Match
|
RISB0972 |
Sitophilus oryzae
Order: Coleoptera
|
produce vitamins and essential amino acids required for insect development and cuticle biosynthesis
|
0.14% |
17.1
|
Enterobacter cloacae
Species-level Match
Host Order Match
|
RISB1428 |
Rhynchophorus ferrugineus
Order: Coleoptera
|
promote the development and body mass gain of RPW larvae by improving their nutrition metabolism
|
0.04% |
17.0
|
Pseudomonas aeruginosa
Species-level Match
Host Order Match
|
RISB0364 |
Pagiophloeus tsushimanus
Order: Coleoptera
|
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
|
0.08% |
16.9
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB1548 |
Costelytra zealandica
Order: Coleoptera
|
symbionts residing in the colleterial glands produce phenol 1 as the female sex pheromone
|
0.08% |
16.9
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB1868 |
Costelytra zealandica
Order: Coleoptera
|
produces phenol as the sex pheromone of the host from tyrosine in the colleterial gland
|
0.08% |
16.8
|
Streptomyces sp. S1A1-8
Species-level Match
Host Order Match
|
RISB0777 |
Copris tripartitus
Order: Coleoptera
|
contribute brood ball hygiene by inhibiting fungal parasites in the environment
|
0.08% |
16.7
|
Klebsiella pneumoniae
Species-level Match
Host Order Match
|
RISB1153 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
1.27% |
16.6
|
Streptomyces sp. CB00271
Species-level Match
Host Order Match
|
RISB0777 |
Copris tripartitus
Order: Coleoptera
|
contribute brood ball hygiene by inhibiting fungal parasites in the environment
|
0.01% |
16.6
|
Streptomyces sp. BPPL-273
Species-level Match
Host Order Match
|
RISB0777 |
Copris tripartitus
Order: Coleoptera
|
contribute brood ball hygiene by inhibiting fungal parasites in the environment
|
0.00% |
16.6
|
Klebsiella sp. P1954
Species-level Match
Host Order Match
|
RISB0809 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-17 oxidation pathway
|
0.09% |
16.5
|
Erwinia sp. Ejp617
Species-level Match
Host Order Match
|
RISB0808 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-12 oxidation pathway
|
0.04% |
16.5
|
Klebsiella sp. PL-2018
Species-level Match
Host Order Match
|
RISB0809 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-17 oxidation pathway
|
0.01% |
16.4
|
Paenibacillus sp. sptzw28
Species-level Match
Host Order Match
|
RISB0813 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-9 oxidation pathway
|
0.00% |
16.4
|
Enterobacter asburiae
Species-level Match
Host Order Match
|
RISB1150 |
Plodia interpunctella
Order: Coleoptera
|
damaged polyethylene (PE) films
|
0.04% |
15.7
|
Aeromonas sp. 2692-1
Species-level Match
Host Order Match
|
RISB1145 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.04% |
15.4
|
Staphylococcus epidermidis
Species-level Match
Host Order Match
|
RISB1070 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.01% |
15.2
|
Salmonella enterica
Species-level Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
10.06% |
15.1
|
Raoultella
Host Order Match
|
RISB2226 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.01% |
13.4
|
Proteus
Host Order Match
|
RISB0001 |
Leptinotarsa decemlineata
Order: Coleoptera
|
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
|
0.04% |
12.7
|
Bacteroides
Host Order Match
|
RISB1183 |
Oryzaephilus surinamensis
Order: Coleoptera
|
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
|
0.00% |
12.0
|
Vibrio
Host Order Match
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.66% |
12.0
|
Microbacterium
Host Order Match
|
RISB2275 |
Leptinotarsa decemlineata
Order: Coleoptera
|
extreme cellulolytic enzymes, at extreme (pH 13) conditions, exhibited cellulolytic properties
|
0.02% |
11.9
|
Rhizobium
Host Order Match
|
RISB0135 |
Coccinella septempunctata
Order: Coleoptera
|
be commonly found in plant roots and they all have nitrogen fixation abilities
|
0.02% |
11.6
|
Kosakonia
Host Order Match
|
RISB0810 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-16 oxidation pathway
|
0.12% |
11.5
|
Raoultella
Host Order Match
|
RISB1007 |
Monochamus alternatus
Order: Coleoptera
|
may help M. alternatus degrade cellulose and pinene
|
0.01% |
11.0
|
Mycobacterium
Host Order Match
|
RISB1156 |
Nicrophorus concolor
Order: Coleoptera
|
produces Antimicrobial compounds
|
0.03% |
10.7
|
Kosakonia
Host Order Match
|
RISB1155 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.12% |
10.5
|
Rhodococcus
Host Order Match
|
RISB1157 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.03% |
10.4
|
Lysinibacillus
Host Order Match
|
RISB1066 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.04% |
10.3
|
Comamonas
Host Order Match
|
RISB1061 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.02% |
10.2
|
Candidatus Pantoea carbekii
Species-level Match
|
RISB1046 |
Halyomorpha halys
Order: Hemiptera
|
provides its host with essential nutrients, vitamins, cofactors and protection of the most vulnerable stages of early development (1st nymphal stages). Pantoea carbekii is highly stress tolerant, especially once secreted to cover the eggs, by its unique biofilm-formation properties, securing host offspring survival
|
0.03% |
10.0
|
Arsenophonus sp. aPb
Species-level Match
|
RISB1047 |
Aphis gossypii
Order: Hemiptera
|
secondary symbiont reduction led to reduction of the total life span and intrinsic rate of natural increase as well as appearance of the deformed dead offspring. H. defensa and Arsenophonus contributed to the fitness of A. gossypii by enhancing its performance, but not through parasitoid resistance.
|
0.02% |
10.0
|
Buchnera aphidicola
Species-level Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
0.02% |
10.0
|
Paenibacillus polymyxa
Species-level Match
|
RISB2195 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.01% |
10.0
|
Enterobacter ludwigii
Species-level Match
|
RISB1543 |
Helicoverpa zea
Order: Lepidoptera
|
two immunity-related genes glucose oxidase (GOX) and lysozyme (LYZ) were more highly expressed in both salivary glands and midguts compared with MgCl2 solution-treated caterpillars
|
1.37% |
10.0
|
Buchnera aphidicola
Species-level Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
0.02% |
9.8
|
Arsenophonus sp. aPb
Species-level Match
|
RISB1300 |
Aphis gossypii
Order: Hemiptera
|
Arsenophonus sp. can have different effects on its hosts, including obligate mutualism in blood-sucking insects, improving the performance of whiteflies, or through facultative mutualism by protecting psyllids against parasitoid attacks.
|
0.02% |
9.8
|
Candidatus Nasuia deltocephalinicola
Species-level Match
|
RISB2283 |
Nephotettix cincticeps
Order: Hemiptera
|
Oral administration of tetracycline to nymphal N. cincticeps resulted in retarded growth, high mortality rates, and failure in adult emergence, suggesting important biological roles of the symbionts for the host insect
|
0.01% |
9.4
|
Weissella cibaria
Species-level Match
|
RISB1982 |
Blattella germanica
Order: Blattodea
|
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
|
0.01% |
8.8
|
Buchnera aphidicola
Species-level Match
|
RISB0685 |
Acyrthosiphon pisum
Order: Hemiptera
|
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
|
0.02% |
8.8
|
Burkholderia sp. FERM BP-3421
Species-level Match
|
RISB1501 |
Riptortus pedestris
Order: Hemiptera
|
Susceptible insects became resistant via acquisition of pesticide-degrading symbionts from pesticide-sprayed soil. This association could occur only after two-time-spraying on soil
|
0.01% |
8.6
|
Citrobacter sp. BIDMC108
Species-level Match
|
RISB1503 |
Bactrocera dorsalis
Order: Diptera
|
Pesticide-degrading bacteria were frequently detected from pesticide-resistant insects. Susceptible insects became resistant after inoculation of the pesticide-degrading symbiont
|
0.01% |
8.6
|
Candidatus Portiera aleyrodidarum
Species-level Match
|
RISB1193 |
Bemisia tabaci
Order: Hemiptera
|
synthesizing essential amino acid (e.g. tryptophan, leucine and L-Isoleucine), Bemisia tabaci provides vital nutritional support for growth, development and reproduction
|
0.00% |
8.4
|
Lactobacillus sp. wkB8
Species-level Match
|
RISB0292 |
Lymantria dispar asiatica
Order: Lepidoptera
|
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
|
0.01% |
8.4
|
Candidatus Mikella endobia
Species-level Match
|
RISB1887 |
Paracoccus marginatus
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.00% |
8.3
|
Paenibacillus sp. sptzw28
Species-level Match
|
RISB0774 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.00% |
8.3
|
Burkholderia sp. FERM BP-3421
Species-level Match
|
RISB2070 |
Riptortus pedestris
Order: Hemiptera
|
Burkholderia sp. did not affect the development of the host insect but the first oviposition time was in approximately 60% compared with a control group
|
0.01% |
8.1
|
Arsenophonus sp. aPb
Species-level Match
|
RISB1048 |
Aphis gossypii
Order: Hemiptera
|
symbiont reduction led to reduction of the total life span and intrinsic rate of natural increase as well as appearance of the deformed dead offspring
|
0.02% |
8.0
|
Candidatus Profftella armatura (Diaphorina cf. continua)
Species-level Match
|
RISB2147 |
Diaphorina citri
Order: Hemiptera
|
a defensive symbiont presumably of an obligate nature, which encoded horizontally acquired genes for synthesizing a novel polyketide toxin, diaphorin
|
0.00% |
8.0
|
Candidatus Moranella endobia
Species-level Match
|
RISB2232 |
Planococcus citri
Order: Hemiptera
|
be responsible for the biosynthesis of most cellular components and energy provision, and controls most informational processes for the consortium
|
0.03% |
8.0
|
Weissella cibaria
Species-level Match
|
RISB0641 |
Formica
Order: Hymenoptera
|
exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew
|
0.01% |
7.8
|
Candidatus Profftella armatura (Diaphorina cf. continua)
Species-level Match
|
RISB2005 |
Diaphorina citri
Order: Hemiptera
|
produce proteins involved in polyketide biosynthesis,which were up-regulated in CLas(+) insects (associated with citrus greening disease)
|
0.00% |
7.7
|
Candidatus Nasuia deltocephalinicola
Species-level Match
|
RISB2282 |
Nephotettix cincticeps
Order: Hemiptera
|
With the antibiotic, nymphal growth was remarkably retarded, and a number of nymphs either died or failed to attain adulthood
|
0.01% |
7.5
|
Candidatus Profftella armatura (Diaphorina cf. continua)
Species-level Match
|
RISB2146 |
Diaphorina citri
Order: Hemiptera
|
encoded horizontally acquired genes for synthesizing a novel polyketide toxin, providing defense against natural enemies
|
0.00% |
7.4
|
Candidatus Nasuia deltocephalinicola
Species-level Match
|
RISB0262 |
Maiestas dorsalis
Order: Hemiptera
|
are responsible for synthesizing two essential amino acids (histidine and methionine) and riboflavin (vitamin B2)
|
0.01% |
7.3
|
Candidatus Portiera aleyrodidarum
Species-level Match
|
RISB2289 |
Bemisia tabaci
Order: Hemiptera
|
encoding the capability to synthetize, or participate in the synthesis of, several amino acids and carotenoids,
|
0.00% |
7.2
|
Xanthomonas
|
RISB0498 |
Xylocopa appendiculata
Order: Hymenoptera
|
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
|
3.40% |
7.2
|
Candidatus Portiera aleyrodidarum
Species-level Match
|
RISB1973 |
Bemisia tabaci
Order: Hemiptera
|
a primary symbiont, which compensates for the deficient nutritional composition of its food sources
|
0.00% |
7.0
|
Pantoea dispersa
Species-level Match
|
RISB0182 |
Spodoptera frugiperda
Order: Lepidoptera
|
detoxify benzoxazinoids (secondary metabolites produced by maize) and promote caterpillar growth
|
0.01% |
6.9
|
Candidatus Ishikawella capsulata
Species-level Match
|
RISB2368 |
Megacopta punctatissima
Order: Hemiptera
|
Microbe compensates for nutritional deficiency of host diet by supplying essential amino acids
|
0.04% |
6.9
|
Corynebacterium sp. ATCC 6931
Species-level Match
|
RISB0531 |
Helicoverpa armigera
Order: Lepidoptera
|
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
|
0.16% |
6.8
|
Candidatus Westeberhardia cardiocondylae
Species-level Match
|
RISB1794 |
Cardiocondyla obscurior
Order: Hymenoptera
|
Contributes to cuticle formation and is responsible for host invasive success
|
0.05% |
6.6
|
Pantoea dispersa
Species-level Match
|
RISB1413 |
Bactrocera dorsalis
Order: Diptera
|
causing female Bactrocera dorsalis laid more eggs but had shorter lifespan
|
0.01% |
6.5
|
Burkholderia sp. FERM BP-3421
Species-level Match
|
RISB1502 |
Cavelerius saccharivorus
Order: Hemiptera
|
Gut symbionts showed a pesticide-degrading activity in vivo and in vitro
|
0.01% |
6.5
|
Candidatus Westeberhardia cardiocondylae
Species-level Match
|
RISB1795 |
Cardiocondyla obscurior
Order: Hymenoptera
|
a contribution of Westeberhardia to cuticle formation
|
0.05% |
6.1
|
Lactiplantibacillus plantarum
Species-level Match
|
RISB0674 |
Drosophila melanogaster
Order: Diptera
|
could effectively inhibit fungal spore germinations
|
0.01% |
6.0
|
Aeromonas sp. 2692-1
Species-level Match
|
RISB2456 |
Bombyx mori
Order: Lepidoptera
|
able to utilize the CMcellulose and xylan
|
0.04% |
5.9
|
Candidatus Ishikawella capsulata
Species-level Match
|
RISB2543 |
Megacopta punctatissima
Order: Hemiptera
|
Enhance pest status of the insect host
|
0.04% |
5.8
|
Methylobacterium sp. 4-46
Species-level Match
|
RISB2053 |
Atractomorpha sinensis
Order: Orthoptera
|
associated with cellulolytic enzymes
|
0.02% |
5.7
|
Providencia sp. PROV188
Species-level Match
|
RISB1574 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
0.00% |
5.7
|
Providencia sp. PROV188
Species-level Match
|
RISB0984 |
Nasonia vitripennis
Order: Hymenoptera
|
may highly associated with diapause
|
0.00% |
5.7
|
Erwinia sp. Ejp617
Species-level Match
|
RISB1986 |
Bombyx mori
Order: Lepidoptera
|
producing cellulase and amylase
|
0.04% |
5.7
|
Aeromonas sp. 2692-1
Species-level Match
|
RISB2086 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.04% |
5.6
|
Chryseobacterium sp. POL2
Species-level Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.04% |
5.6
|
Xanthomonas
|
RISB0217 |
Xylocopa appendiculata
Order: Hymenoptera
|
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
|
3.40% |
5.3
|
Candidatus Steffania adelgidicola
Species-level Match
|
RISB2278 |
Adelges nordmannianae/piceae
Order: Hemiptera
|
None
|
0.25% |
5.3
|
Candidatus Moranella endobia
Species-level Match
|
RISB1588 |
Planococcus citri
Order: Hemiptera
|
None
|
0.03% |
5.0
|
Lactiplantibacillus plantarum
Species-level Match
|
RISB0608 |
Drosophila melanogaster
Order: Diptera
|
None
|
0.01% |
5.0
|
Candidatus Annandia adelgestsuga
Species-level Match
|
RISB2207 |
Adelges tsugae
Order: Hemiptera
|
None
|
0.01% |
5.0
|
Candidatus Regiella
|
RISB1370 |
Sitobion avenae
Order: Hemiptera
|
Regiella infection decreased the intrinsic rate of increase (rm) of aphids at 25 °C and 28 °C. However, at 31 °C, the effect of Regiella on the rm varied depending on the aphid genotype and density. Thus, the negative effects of this endosymbiont on its host were environmentally dependent.
|
0.01% |
5.0
|
Bifidobacterium
|
RISB0174 |
Apis mellifera
Order: Hymenoptera
|
Bifidobacterium provides complementary demethylation service to promote Gilliamella growth on methylated homogalacturonan, an enriched polysaccharide of pectin. In exchange, Gilliamella shares digestive products with Bifidobacterium, through which a positive interaction is established
|
0.01% |
5.0
|
Candidatus Erwinia haradaeae
Species-level Match
|
RISB1632 |
Lachninae
Order: Hemiptera
|
None
|
0.00% |
5.0
|
Candidatus Palibaumannia cicadellinicola
Species-level Match
|
RISB1594 |
Graphocephala coccinea
Order: Hemiptera
|
None
|
0.00% |
5.0
|
Deinococcus
|
RISB1649 |
Camponotus japonicus
Order: Hymenoptera
|
Four new aminoglycolipids, deinococcucins A–D, were discovered from a Deinococcus sp. strain isolated from the gut of queen carpenter ants, Camponotus japonicus, showed functional ability of inducing the quinone reductase production in host cells
|
0.03% |
5.0
|
Treponema
|
RISB2377 |
termite
Order: Blattodea
|
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
|
0.01% |
4.9
|
Microbacterium
|
RISB0084 |
Osmia cornifrons
Order: Hymenoptera
|
In O. cornifrons larvae, Microbacterium could contribute to the balance and resiliency of the gut microbiome under stress conditions. In addition, Rhodococcus was found in O. cornifrons larvae and is known for its detoxification capabilities
|
0.02% |
4.8
|
Candidatus Regiella
|
RISB1819 |
Sitobion avenae
Order: Hemiptera
|
In R. insecticola-infected aphid lines, there were increases in plasticities for developmental times of first and second instar nymphs and for fecundity, showing novel functional roles of bacterial symbionts in plant-insect interactions.
|
0.01% |
4.8
|
Clostridium
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.02% |
4.2
|
Candidatus Regiella
|
RISB1363 |
Sitobion avenae
Order: Hemiptera
|
R. insecticola-infected aphids were more predated by the ladybird Hippodamia variegata irrespective of host plants and did not improve defences against coccinellid predators or metabolic rates on any host plants
|
0.01% |
4.2
|
Bifidobacterium
|
RISB0616 |
Spodoptera frugiperda
Order: Lepidoptera
|
Strain wkB204 grew in the presence of amygdalin as the sole carbon source, suggesting that this strain degrades amygdalin and is not susceptible to the potential byproducts
|
0.01% |
3.5
|
Pectobacterium
|
RISB1889 |
Pseudococcus longispinus
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.05% |
3.4
|
Rhodococcus
|
RISB0775 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.03% |
3.3
|
Candidatus Blochmanniella
|
RISB2542 |
Camponotus
Order: Hymenoptera
|
Blochmannia provide essential amino acids to its host,Camponotus floridanus, and that it may also play a role in nitrogen recycling via its functional urease
|
0.07% |
3.2
|
Candidatus Blochmanniella
|
RISB1827 |
Camponotus floridanus
Order: Hymenoptera
|
a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission
|
0.07% |
3.2
|
Yersinia
|
RISB0492 |
Cimex hemipterus
Order: Hemiptera
|
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
|
0.49% |
2.9
|
Candidatus Blochmanniella
|
RISB2448 |
Camponotus floridanus
Order: Hymenoptera
|
nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling
|
0.07% |
2.8
|
Shewanella
|
RISB1924 |
Anopheles gambiae
Order: Diptera
|
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
|
0.10% |
2.6
|
Comamonas
|
RISB2021 |
Bactrocera dorsalis
Order: Diptera
|
This group in the immature stages may be helping the insects to cope with oxidative stress by supplementing available oxygen.
|
0.02% |
2.5
|
Bacteroides
|
RISB0256 |
Leptocybe invasa
Order: Hymenoptera
|
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
|
0.00% |
2.3
|
Proteus
|
RISB2315 |
Aedes aegypti
Order: Diptera
|
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
|
0.04% |
2.2
|
Bacteroides
|
RISB0090 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.00% |
2.1
|
Rhodococcus
|
RISB0430 |
Rhodnius prolixus
Order: Hemiptera
|
Rhodnius prolixus harbouring R. rhodnii developed faster, had higher survival, and laid more eggs
|
0.03% |
2.0
|
Microbacterium
|
RISB2274 |
Ostrinia nubilalis
Order: Lepidoptera
|
extreme cellulolytic enzymes, at extreme (pH 13) conditions, exhibited cellulolytic properties
|
0.02% |
1.9
|
Xenorhabdus
|
RISB1372 |
Spodoptera frugiperda
Order: Lepidoptera
|
the products of the symbiont gene cluster inhibit Spodoptera frugiperda phenoloxidase activity
|
0.02% |
1.9
|
Xenorhabdus
|
RISB2270 |
Acyrthosiphon pisum
Order: Hemiptera
|
have the gene PIN1 encoding the protease inhibitor protein against aphids
|
0.02% |
1.5
|
Neisseria
|
RISB0512 |
Plutella xylostella
Order: Lepidoptera
|
None
|
1.44% |
1.4
|
Raoultella
|
RISB1672 |
Spodoptera frugiperda
Order: Lepidoptera
|
downregulated POX but upregulated trypsin PI in this plant species
|
0.01% |
1.3
|
Dickeya
|
RISB1086 |
Rhodnius prolixus
Order: Hemiptera
|
supply enzymatic biosynthesis of B-complex vitamins
|
0.08% |
1.1
|
Pectobacterium
|
RISB0798 |
Pseudoregma bambucicola
Order: Hemiptera
|
may help P. bambucicola feed on the stalks of bamboo
|
0.05% |
1.1
|
Clostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.02% |
1.1
|
Proteus
|
RISB2460 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
0.04% |
1.0
|
Lysinibacillus
|
RISB1416 |
Psammotermes hypostoma
Order: Blattodea
|
isolates showed significant cellulolytic activity
|
0.04% |
1.0
|
Yersinia
|
RISB0407 |
Anaphes nitens
Order: Hymenoptera
|
None
|
0.49% |
0.5
|
Priestia
|
RISB0839 |
Helicoverpa armigera
Order: Lepidoptera
|
producing amylase
|
0.01% |
0.4
|
Comamonas
|
RISB1875 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.02% |
0.3
|
Ralstonia
|
RISB0243 |
Spodoptera frugiperda
Order: Lepidoptera
|
None
|
0.06% |
0.1
|
Pectobacterium
|
RISB1772 |
Muscidae
Order: Diptera
|
None
|
0.05% |
0.1
|
Legionella
|
RISB1687 |
Polyplax serrata
Order: Phthiraptera
|
None
|
0.03% |
0.0
|
Clostridium
|
RISB1959 |
Pyrrhocoridae
Order: Hemiptera
|
None
|
0.02% |
0.0
|
Candidatus Profftia
|
RISB1664 |
Adelgidae
Order: Hemiptera
|
None
|
0.02% |
0.0
|
Helicobacter
|
RISB0662 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.02% |
0.0
|
Bifidobacterium
|
RISB1944 |
Apis cerana
Order: Hymenoptera
|
None
|
0.01% |
0.0
|
Treponema
|
RISB0169 |
Reticulitermes flaviceps
Order: Blattodea
|
None
|
0.01% |
0.0
|
Cupriavidus
|
RISB0694 |
Alydus tomentosus
Order: Hemiptera
|
None
|
0.01% |
0.0
|
Paraburkholderia
|
RISB0125 |
Physopelta gutta
Order: Hemiptera
|
None
|
0.01% |
0.0
|
Flavobacterium
|
RISB0659 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.01% |
0.0
|
Geobacillus
|
RISB1251 |
Potamobates horvathi
Order: Hemiptera
|
None
|
0.00% |
0.0
|
Propionibacterium
|
RISB0490 |
Ceratitis capitata
Order: Diptera
|
None
|
0.00% |
0.0
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.