SRR12513816 - Dactylopius opuntiae

Basic Information

Run: SRR12513816

Assay Type: WGS

Bioproject: PRJNA658782

Biosample: SAMN15887939

Bytes: 13830377789

Center Name: CENTRO DE CIENCIAS GENOMICAS

Sequencing Information

Instrument: Illumina HiSeq 2500

Library Layout: PAIRED

Library Selection: PCR

Platform: ILLUMINA

Geographic Information

Country: Mexico

Continent: North America

Location Name: Mexico: Morelos

Latitude/Longitude: 18.990361 N 99.117389 W

Sample Information

Host: Dactylopius opuntiae

Isolation: adult female whole insect body collected from Opuntia sp.

Biosample Model: Metagenome or environmental

Collection Date: 2017-05

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Spiroplasma ixodetis
RISB0842
Dactylopius coccus
Order: Hemiptera
use the T4SS to interact with the Dactylopius cells, which show a strong interaction and molecular signaling in the symbiosis
11.22%
28.7
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
0.02%
20.0
Arsenophonus sp. aPb
RISB1047
Aphis gossypii
Order: Hemiptera
secondary symbiont reduction led to reduction of the total life span and intrinsic rate of natural increase as well as appearance of the deformed dead offspring. H. defensa and Arsenophonus contributed to the fitness of A. gossypii by enhancing its performance, but not through parasitoid resistance.
0.00%
20.0
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
0.02%
19.8
Arsenophonus sp. aPb
RISB1300
Aphis gossypii
Order: Hemiptera
Arsenophonus sp. can have different effects on its hosts, including obligate mutualism in blood-sucking insects, improving the performance of whiteflies, or through facultative mutualism by protecting psyllids against parasitoid attacks.
0.00%
19.7
Klebsiella sp. ZYC-1
RISB2304
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.12%
19.3
Clostridium sp. CF011
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.01%
19.2
Clostridium sp. DL-VIII
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.00%
19.2
Candidatus Schneideria nysicola
RISB0872
Nysius sp.
Order: Hemiptera
synthesize four B vitamins(Pan, pantothenate;Fol, folate; Rib, riboflavin; Pyr, pyridoxine) and five Essential Amino Acids(Ile, isoleucine; Val, valine; Lys, lysine; Thr, threonine; Phe, phenylalanine)
0.00%
19.0
Buchnera aphidicola
RISB0685
Acyrthosiphon pisum
Order: Hemiptera
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
0.02%
18.8
Candidatus Portiera aleyrodidarum
RISB1193
Bemisia tabaci
Order: Hemiptera
synthesizing essential amino acid (e.g. tryptophan, leucine and L-Isoleucine), Bemisia tabaci provides vital nutritional support for growth, development and reproduction
0.00%
18.4
Enterococcus sp. 9E7_DIV0242
RISB1490
Nezara viridula
Order: Hemiptera
help stinkbugs to feed on soybean developing seeds in spite of its chemical defenses by degrading isoflavonoids and deactivate soybean protease inhibitors
0.00%
18.1
Arsenophonus sp. aPb
RISB1048
Aphis gossypii
Order: Hemiptera
symbiont reduction led to reduction of the total life span and intrinsic rate of natural increase as well as appearance of the deformed dead offspring
0.00%
18.0
Pseudomonas fulva
RISB1303
Aphis gossypii
Order: Hemiptera
By using caffeine from plants to produce nitrogen, this bacterium allows the coffee borer beetle to survive in coffee plants
0.00%
17.5
Candidatus Portiera aleyrodidarum
RISB2289
Bemisia tabaci
Order: Hemiptera
encoding the capability to synthetize, or participate in the synthesis of, several amino acids and carotenoids,
0.00%
17.2
Candidatus Portiera aleyrodidarum
RISB1973
Bemisia tabaci
Order: Hemiptera
a primary symbiont, which compensates for the deficient nutritional composition of its food sources
0.00%
17.0
Enterococcus faecalis
RISB0336
Riptortus pedestris
Order: Hemiptera
can be utilized as a novel probiotic which increase the survival rate of insects
0.00%
16.6
Lactococcus lactis
RISB0337
Riptortus pedestris
Order: Hemiptera
can be utilized as a novel probiotic which increase the survival rate of insects
0.00%
16.6
Pseudomonas sp. CIP-10
RISB0700
Nilaparvata lugens
Order: Hemiptera
Pseudomonas sp. composition and abundance correlated with BPH survivability
0.04%
16.5
Pseudomonas sp. ADPe
RISB0700
Nilaparvata lugens
Order: Hemiptera
Pseudomonas sp. composition and abundance correlated with BPH survivability
0.00%
16.5
Rickettsia sp. MEAM1 (Bemisia tabaci)
RISB0704
Aphis craccivora
Order: Hemiptera
facultative symbiont
0.00%
15.4
Escherichia coli
RISB0412
Melanaphis sacchari
Order: Hemiptera
None
0.06%
15.1
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
0.02%
15.0
Rickettsia conorii
RISB1901
Bemisia tabaci
Order: Hemiptera
None
0.00%
15.0
Staphylococcus xylosus
RISB0672
Melanaphis bambusae
Order: Hemiptera
None
0.00%
15.0
Candidatus Erwinia haradaeae
RISB1632
Lachninae
Order: Hemiptera
None
0.00%
15.0
Pantoea agglomerans
RISB2357
Daktulosphaira vitifoliae
Order: Hemiptera
None
0.00%
15.0
Candidatus Palibaumannia cicadellinicola
RISB1594
Graphocephala coccinea
Order: Hemiptera
None
0.00%
15.0
Cupriavidus pauculus
RISB0694
Alydus tomentosus
Order: Hemiptera
None
0.00%
15.0
Flavobacterium johnsoniae
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
0.00%
15.0
Candidatus Karelsulcia muelleri
RISB1591
Philaenus spumarius
Order: Hemiptera
None
0.00%
15.0
Candidatus Cardinium hertigii
RISB2548
Scaphoideus titanus
Order: Hemiptera
None
0.00%
15.0
Rickettsiella
RISB2479
Acyrthosiphon pisum
Order: Hemiptera
changes the insects’ body color from red to green in natural populations, the infection increased amounts of blue-green polycyclic quinones, whereas it had less of an effect on yellow-red carotenoid pigments
0.00%
14.1
Sodalis
RISB0122
Nezara viridula
Order: Hemiptera
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies.
0.00%
13.6
Rickettsiella
RISB2262
Acyrthosiphon pisum
Order: Hemiptera
against this entomopathogen Pandora neoaphidis, reduce mortality and also decrease fungal sporulation on dead aphids which may help protect nearby genetically identical insects
0.00%
13.5
Sodalis
RISB1888
Pseudococcus longispinus
Order: Hemiptera
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
0.00%
13.3
Sodalis
RISB0998
Bactericera trigonica
Order: Hemiptera
Sodalis infecting B. trigonica was more closely related to symbionts infecting weevils, stink bugs and tsetse flies than to those from psyllid species
0.00%
13.0
Rickettsiella
RISB1739
Acyrthosiphon pisum
Order: Hemiptera
in an experiment with a single-injected isolate of Rickettsiella sp. wasps were also attracted to plants fed on by aphids without secondary symbionts
0.00%
13.0
Yersinia
RISB0492
Cimex hemipterus
Order: Hemiptera
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
0.00%
12.4
Xenorhabdus
RISB2270
Acyrthosiphon pisum
Order: Hemiptera
have the gene PIN1 encoding the protease inhibitor protein against aphids
0.00%
11.5
Dickeya
RISB1086
Rhodnius prolixus
Order: Hemiptera
supply enzymatic biosynthesis of B-complex vitamins
0.00%
11.0
Klebsiella sp. ZYC-1
RISB2187
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.12%
10.1
Klebsiella pneumoniae
RISB2185
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.06%
10.1
Bacillus cereus
RISB2161
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.04%
10.0
Gilliamella apicola
RISB0102
Apis mellifera
Order: Hymenoptera
Gilliamella apicola carries the gene for the desaturase FADS2, which is able to metabolize polyunsaturated fatty acids from pollen and synthesize endocannabinoid, a lipogenic neuroactive substance, thereby modulating reward learning and memory in honeybees.
0.04%
10.0
Bacillus thuringiensis
RISB2177
Armadillidae
Order: Isopoda
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.02%
10.0
Wolbachia pipientis
RISB0766
Aedes fluviatilis
Order: Diptera
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
0.01%
10.0
Halomonas
RISB1374
Bemisia tabaci
Order: Hemiptera
None
0.01%
10.0
Aeromonas
RISB2063
Sitobion miscanthi
Order: Hemiptera
None
0.01%
10.0
Achromobacter
RISB0383
Aphis gossypii
Order: Hemiptera
None
0.01%
10.0
Paraburkholderia
RISB0125
Physopelta gutta
Order: Hemiptera
None
0.01%
10.0
Enterococcus mundtii
RISB1733
Spodoptera littoralis
Order: Lepidoptera
actively secretes a stable class IIa bacteriocin (mundticin KS) against invading bacteria, including the opportunistic pathogens E. faecalis and E. casseliflavus, but not against other gut residents, facilitating the normal development of host gut microbiota
0.00%
10.0
Lactococcus lactis
RISB0131
Ceratitis capitata
Order: Diptera
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The  colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
0.00%
10.0
Pantoea agglomerans
RISB2197
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.00%
10.0
Bacillus sp. 1NLA3E
RISB2178
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.00%
10.0
Paenibacillus polymyxa
RISB2195
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.00%
10.0
Listeria monocytogenes
RISB2308
Drosophila melanogaster
Order: Diptera
L. monocytogenes infection disrupts host energy metabolism by depleting energy stores (triglycerides and glycogen) and reducing metabolic pathway activity (beta-oxidation and glycolysis). The infection affects antioxidant defense by reducing uric acid levels and alters amino acid metabolism. These metabolic changes are accompanied by melanization, potentially linked to decreased tyrosine levels.
0.00%
10.0
Burkholderia gladioli
RISB1172
Lagria villosa
Order: Coleoptera
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
0.00%
10.0
Metabacillus
RISB0902
Myzus persicae
Order: Hemiptera
None
0.00%
10.0
Candidatus Profftia
RISB1664
Adelgidae
Order: Hemiptera
None
0.00%
10.0
Candidatus Vallotia
RISB1665
Adelgidae
Order: Hemiptera
None
0.00%
10.0
Helicobacter
RISB0662
Melanaphis bambusae
Order: Hemiptera
None
0.00%
10.0
Acinetobacter sp. SCLZS86
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.01%
9.7
Acinetobacter sp. Marseille-Q1620
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.00%
9.7
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
0.06%
9.4
Burkholderia gladioli
RISB1729
Lagria hirta
Order: Coleoptera
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
0.00%
9.3
Stenotrophomonas maltophilia
RISB1122
Bombyx mori
Order: Lepidoptera
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
0.02%
9.0
Mammaliicoccus sciuri
RISB0075
Bombyx mori
Order: Lepidoptera
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
0.01%
9.0
Staphylococcus xylosus
RISB2497
Anticarsia gemmatalis
Order: Lepidoptera
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
0.00%
9.0
Streptomyces sp. T12
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.02%
9.0
Acinetobacter sp. SCLZS86
RISB1978
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
0.01%
8.8
Burkholderia gladioli
RISB1604
Lagria villosa
Order: Coleoptera
Bacteria produce icosalide, an unusual two-tailed lipocyclopeptide antibiotic,which is active against entomopathogenic bacteria, thus adding to the chemical armory protecting beetle offspring
0.00%
8.8
Streptomyces sp. T12
RISB2334
Sirex noctilio
Order: Hymenoptera
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
0.02%
8.7
Enterobacter ludwigii
RISB1543
Helicoverpa zea
Order: Lepidoptera
two immunity-related genes glucose oxidase (GOX) and lysozyme (LYZ) were more highly expressed in both salivary glands and midguts compared with MgCl2 solution-treated caterpillars
0.00%
8.6
Lactococcus lactis
RISB0967
Oulema melanopus
Order: Coleoptera
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
0.00%
8.6
Sphingobacterium sp. UDSM-2020
RISB2227
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.00%
8.3
Spiroplasma sp. BIUS-1
RISB1353
Cephus cinctus
Order: Hymenoptera
The bacterium also encoded biosynthetic pathways for essential vitamins B2, B3, and B9. We identified putative Spiroplasma virulence genes: cardiolipin and chitinase.
0.01%
8.3
Spiroplasma sp. TIUS-1
RISB1353
Cephus cinctus
Order: Hymenoptera
The bacterium also encoded biosynthetic pathways for essential vitamins B2, B3, and B9. We identified putative Spiroplasma virulence genes: cardiolipin and chitinase.
0.00%
8.3
Morganella morganii
RISB0772
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.00%
8.3
Paenibacillus sp. FSL W8-0186
RISB0774
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.00%
8.3
Wigglesworthia glossinidia
RISB0369
Glossina morsitans
Order: Diptera
symbiont-derived factors, likely B vitamins, are critical for the proper function of both lipid biosynthesis and lipolysis to maintain tsetse fly fecundity
0.00%
8.1
Morganella morganii
RISB0008
Phormia regina
Order: Diptera
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.00%
8.0
Blattabacterium cuenoti
RISB0133
Panesthiinae
Order: Blattodea
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
0.01%
8.0
Morganella morganii
RISB1867
Costelytra zealandica
Order: Coleoptera
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
0.00%
7.8
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.06%
7.8
Stenotrophomonas maltophilia
RISB1227
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.02%
7.7
Enterobacter ludwigii
RISB1223
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.00%
7.7
Proteus vulgaris
RISB0001
Leptinotarsa decemlineata
Order: Coleoptera
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
0.00%
7.7
Wolbachia pipientis
RISB1515
Drosophila melanogaster
Order: Diptera
increases the recombination rate observed across two genomic intervals and increases the efficacy of natural selection in hosts
0.01%
7.6
Chromobacterium sp. IIBBL 290-4
RISB1453
Aedes aegypti
Order: Diptera
aminopeptidase secreted by a Chromobacterium species suppresses DENV infection by directly degrading the DENV envelope protein
0.00%
7.5
Carnobacterium maltaromaticum
RISB1693
Plutella xylostella
Order: Lepidoptera
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
0.00%
7.5
Comamonas terrigena
RISB2021
Bactrocera dorsalis
Order: Diptera
This group in the immature stages may be helping the insects to cope with oxidative stress by supplementing available oxygen.
0.00%
7.5
Streptomyces sp. T12
RISB1134
mud dauber wasp
Order: Hymenoptera
secondary metabolites derived from a Streptomyces sp. displayed significant inhibitory activity against hexokinase II
0.02%
7.4
Pantoea agglomerans
RISB2579
Schistocerca gregaria
Order: Orthoptera
produces an antifungal and antibacterial molecule serving as antimicrobial defense against gut pathogens
0.00%
7.1
Apilactobacillus kunkeei
RISB0475
Apis mellifera
Order: Hymenoptera
A. kunkeei alleviated acetamiprid-induced symbiotic microbiota dysregulation and mortality in honeybees
0.00%
7.1
Wolbachia pipientis
RISB1354
Drosophila melanogaster
Order: Diptera
Wolbachia influence octopamine metabolism in the Drosophila females, which is by the symbiont genotype
0.01%
7.1
Wigglesworthia glossinidia
RISB1786
Glossina morsitans
Order: Diptera
Synthesis of a large number of B vitamins, to supplement the host nutritional deficiencies of the diet
0.00%
7.0
Snodgrassella alvi
RISB1423
Bombus spp.
Order: Hymenoptera
The bumble bee microbiome slightly increases survivorship when the host is exposed to selenate
0.00%
6.9
Stenotrophomonas maltophilia
RISB1141
Hermetia illucens
Order: Diptera
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
0.02%
6.8
Staphylococcus xylosus
RISB2247
Anticarsia gemmatalis
Order: Lepidoptera
mitigation of the negative effects of proteinase inhibitors produced by the host plant
0.00%
6.7
Carnobacterium maltaromaticum
RISB1692
Plutella xylostella
Order: Lepidoptera
participate in the synthesis of host lacking amino acids histidine and threonine
0.00%
6.6
Delftia sp. Cs1-4
RISB0806
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-19 oxidation pathway
0.00%
6.4
Paenibacillus sp. FSL W8-0186
RISB0813
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-9 oxidation pathway
0.00%
6.4
Enterobacter ludwigii
RISB1397
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
0.00%
6.3
Wigglesworthia glossinidia
RISB2577
Glossina brevipalpis
Order: Diptera
provide its tsetse host with metabolites such as vitamins
0.00%
6.1
Lactiplantibacillus plantarum
RISB0674
Drosophila melanogaster
Order: Diptera
could effectively inhibit fungal spore germinations
0.00%
6.0
Proteus vulgaris
RISB2460
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
0.00%
6.0
Lysinibacillus fusiformis
RISB1417
Psammotermes hypostoma
Order: Blattodea
isolates showed significant cellulolytic activity
0.00%
6.0
Providencia rettgeri
RISB1001
Anastrepha obliqua
Order: Diptera
improve the sexual competitiveness of males
0.00%
5.9
Carnobacterium maltaromaticum
RISB1691
Plutella xylostella
Order: Lepidoptera
activity of cellulose and hemicellulose
0.00%
5.8
Candidatus Cardinium hertigii
RISB2288
Encarsia pergandiella
Order: Hymenoptera
cause cytoplasmic incompatibility (CI)
0.00%
5.8
Blattabacterium cuenoti
RISB0518
Cryptocercus punctulatus
Order: Blattodea
collaborative arginine biosynthesis
0.01%
5.7
Providencia rettgeri
RISB1169
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
0.00%
5.6
Chryseobacterium sp. MEBOG06
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.00%
5.6
Blattabacterium cuenoti
RISB0093
Blattella germanica
Order: Blattodea
obligate endosymbiont
0.01%
5.4
Lysinibacillus fusiformis
RISB1066
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.00%
5.2
Diaphorobacter aerolatus
RISB1062
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.00%
5.2
Gilliamella apicola
RISB1945
Apis cerana
Order: Hymenoptera
None
0.04%
5.0
Variovorax sp. HW608
RISB1712
Phlebotomus papatasi
Order: Diptera
None
0.01%
5.0
Lactobacillus
RISB1866
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.01%
5.0
Snodgrassella alvi
RISB1947
Apis cerana
Order: Hymenoptera
None
0.00%
5.0
Lactiplantibacillus plantarum
RISB0608
Drosophila melanogaster
Order: Diptera
None
0.00%
5.0
Providencia rettgeri
RISB1352
Nasonia vitripennis
Order: Hymenoptera
None
0.00%
5.0
Variovorax sp. PAMC 28711
RISB1712
Phlebotomus papatasi
Order: Diptera
None
0.00%
5.0
Pectobacterium carotovorum
RISB1772
Muscidae
Order: Diptera
None
0.00%
5.0
Candidatus Legionella polyplacis
RISB1687
Polyplax serrata
Order: Phthiraptera
None
0.00%
5.0
Thauera sp. K11
RISB1711
Phlebotomus papatasi
Order: Diptera
None
0.00%
5.0
Francisella
RISB1907
Bombyx mori
Order: Lepidoptera
After infection with F. tularensis, the induction of melanization and nodulation, which are immune responses to bacterial infection, were inhibited in silkworms. Pre-inoculation of silkworms with F. tularensis enhanced the expression of antimicrobial peptides and resistance to infection by pathogenic bacteria.
0.00%
5.0
Acetobacter
RISB1865
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.00%
5.0
Treponema
RISB2377
termite
Order: Blattodea
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
0.02%
4.9
Apibacter
RISB0603
Apis cerana
Order: Hymenoptera
The acquisition of genes for the degradation of the toxic monosaccharides potentiates Apibacter with the ability to utilize the pollen hydrolysis products, at the same time enabling monosaccharide detoxification for the host
0.00%
4.5
Weissella
RISB1982
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
0.00%
3.8
Xanthomonas
RISB0498
Xylocopa appendiculata
Order: Hymenoptera
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
0.02%
3.8
Photorhabdus
RISB2532
Manduca sexta
Order: Lepidoptera
produces a small-molecule antibiotic (E)-1,3-dihydroxy-2-(isopropyl)-5-(2-phenylethenyl)benzene (ST) that also acts as an inhibitor of phenoloxidase (PO) in the insect host Manduca sexta.
0.00%
3.7
Acetobacter
RISB0961
Drosophila melanogaster
Order: Diptera
The exist of Acetobacter had a balancing effect on food ingestion when carbohydrate levels were high in the warmer months, stabilizing fitness components of flies across the year.
0.00%
3.6
Citrobacter
RISB1503
Bactrocera dorsalis
Order: Diptera
Pesticide-degrading bacteria were frequently detected from pesticide-resistant insects. Susceptible insects became resistant after inoculation of the pesticide-degrading symbiont
0.00%
3.6
Citrobacter
RISB0192
Hermetia illucens
Order: Diptera
can directly promote the expression of two gene families related to intestinal protein metabolism: Hitryp serine protease trypsin family and Himtp metallopeptidase family
0.00%
3.4
Lactobacillus
RISB0292
Lymantria dispar asiatica
Order: Lepidoptera
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
0.01%
3.4
Candidatus Blochmanniella
RISB2542
Camponotus
Order: Hymenoptera
Blochmannia provide essential amino acids to its host,Camponotus floridanus, and that it may also play a role in nitrogen recycling via its functional urease
0.00%
3.1
Candidatus Blochmanniella
RISB1827
Camponotus floridanus
Order: Hymenoptera
a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission
0.00%
3.1
Lactobacillus
RISB0715
Spodoptera frugiperda
Order: Lepidoptera
Have the function of nutrient absorption, energy metabolism, the plant’s secondary metabolites degradation, insect immunity regulation, and so on
0.01%
2.9
Citrobacter
RISB0517
Leptinotarsa decemlineata
Order: Coleoptera
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
0.00%
2.9
Photorhabdus
RISB2573
Manduca sexta
Order: Lepidoptera
the bacteria are symbiotic with entomopathogenic nematodes but become pathogenic on release from the nematode into the insect blood system
0.00%
2.8
Weissella
RISB0641
Formica
Order: Hymenoptera
exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew
0.00%
2.7
Candidatus Blochmanniella
RISB2448
Camponotus floridanus
Order: Hymenoptera
nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling
0.00%
2.7
Bartonella
RISB1673
Apis mellifera
Order: Hymenoptera
a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream
0.00%
2.6
Azospira
RISB1918
Anopheles gambiae
Order: Diptera
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
0.01%
2.6
Shewanella
RISB1924
Anopheles gambiae
Order: Diptera
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
0.00%
2.5
Bacteroides
RISB0256
Leptocybe invasa
Order: Hymenoptera
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
0.01%
2.3
Acetobacter
RISB0184
Drosophila melanogaster
Order: Diptera
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
0.00%
2.3
Bacteroides
RISB0090
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.01%
2.1
Blautia
RISB0091
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.00%
2.1
Nitrosospira
RISB0869
Sirex noctilio
Order: Hymenoptera
might be involved in degrading organic matter and fixing nitrogen occurred exclusively in the larval gut
0.00%
2.1
Bacteroides
RISB1183
Oryzaephilus surinamensis
Order: Coleoptera
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
0.01%
2.1
Streptococcus
RISB2625
Galleria mellonella
Order: Lepidoptera
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
0.02%
2.0
Xanthomonas
RISB0217
Xylocopa appendiculata
Order: Hymenoptera
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
0.02%
2.0
Xenorhabdus
RISB1372
Spodoptera frugiperda
Order: Lepidoptera
the products of the symbiont gene cluster inhibit Spodoptera frugiperda phenoloxidase activity
0.00%
1.9
Leclercia
RISB1757
Spodoptera frugiperda
Order: Lepidoptera
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
0.00%
1.8
Corynebacterium
RISB0363
Pagiophloeus tsushimanus
Order: Coleoptera
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
0.00%
1.8
Streptococcus
RISB2624
Reticulitermes flavipes
Order: Blattodea
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
0.02%
1.7
Corynebacterium
RISB0531
Helicoverpa armigera
Order: Lepidoptera
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
0.00%
1.7
Nostoc
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.00%
1.4
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.04%
1.4
Halomonas
RISB1808
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.01%
1.3
Massilia
RISB2151
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.01%
1.3
Duganella
RISB2152
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.00%
1.3
Dysgonomonas
RISB1235
Hermetia illucens
Order: Diptera
provides the tools for degrading of a broad range of substrates
0.00%
1.3
Photorhabdus
RISB0532
Drosophila melanogaster
Order: Diptera
produces toxin complex (Tc) toxins as major virulence factors
0.00%
1.2
Streptococcus
RISB2604
Homona magnanima
Order: Lepidoptera
influence the growth of Bacillus thuringiensis in the larvae
0.02%
1.2
Komagataeibacter
RISB1883
Drosophila suzukii
Order: Diptera
produce volatile substances that attract female D. suzukii
0.00%
1.2
Leclercia
RISB1758
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.00%
1.1
Paraclostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.01%
1.1
Cronobacter
RISB0247
Tenebrio molitor
Order: Coleoptera
may be indirectly involved in the digestion of PE
0.00%
1.0
Aeromonas
RISB2456
Bombyx mori
Order: Lepidoptera
able to utilize the CMcellulose and xylan
0.01%
0.8
Corynebacterium
RISB2360
Bombyx mori
Order: Lepidoptera
producing lipase in a gut environment
0.00%
0.8
Cedecea
RISB1570
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.00%
0.7
Turicibacter
RISB0451
Odontotaenius disjunctus
Order: Coleoptera
degrading  ellulose and xylan
0.00%
0.6
Aeromonas
RISB2086
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.01%
0.6
Aquitalea
RISB2089
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.00%
0.6
Alcaligenes
RISB1871
Aedes aegypti
Order: Diptera
gut microbiome
0.14%
0.4
Priestia
RISB0839
Helicoverpa armigera
Order: Lepidoptera
producing amylase
0.01%
0.4
Achromobacter
RISB1869
Aedes aegypti
Order: Diptera
gut microbiome
0.01%
0.3
Peribacillus
RISB1877
Aedes aegypti
Order: Diptera
gut microbiome
0.01%
0.3
Treponema
RISB0169
Reticulitermes flaviceps
Order: Blattodea
None
0.02%
0.0
Ralstonia
RISB0243
Spodoptera frugiperda
Order: Lepidoptera
None
0.02%
0.0
Yersinia
RISB0407
Anaphes nitens
Order: Hymenoptera
None
0.00%
0.0
Apibacter
RISB0604
Apis cerana
Order: Hymenoptera
None
0.00%
0.0
Weissella
RISB1566
Liometopum apiculatum
Order: Hymenoptera
None
0.00%
0.0
Dysgonomonas
RISB1481
Brachinus elongatulus
Order: Coleoptera
None
0.00%
0.0
Cedecea
RISB0504
Plutella xylostella
Order: Lepidoptera
None
0.00%
0.0
Vagococcus
RISB0042
Aldrichina grahami
Order: Diptera
None
0.00%
0.0
Candidatus Arthromitus
RISB2613
Multiple species
Order: None
None
0.00%
0.0
Chroococcidiopsis
RISB0487
Ceratitis capitata
Order: Diptera
None
0.00%
0.0
Gibbsiella
RISB1320
Vespa mandarinia
Order: Hymenoptera
None
0.00%
0.0
Lonsdalea
RISB1321
Vespa mandarinia
Order: Hymenoptera
None
0.00%
0.0
Neisseria
RISB0512
Plutella xylostella
Order: Lepidoptera
None
0.00%
0.0
Myroides
RISB0626
Musca altica
Order: Diptera
None
0.00%
0.0

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR12513816
12.9 GB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table